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» Popular Cost-Functions: k-means, k-medians, k-centers, etc.

» Today we will focus on k-means cost-function.



k-Means Clustering

For a k-clustering Cy, ..., Ci of the data, k-means cost-function
measures the squared distance between each point to the centroid
u(G;) of its cluster:

k
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Goal: Find a k-clustering such that the k-means cost is minimized.



Existing k-Means Result

v

[Inaba et al., 1994]: PTAS when both k and dimension d are
constant.

[Kumar et al., 2004]: PTAS when k is a constant.

[Cohen-Addad et al., 2016, Friggstad et al., 2016]: PTAS
when d is a constant.

[Ahmadian et al., 2017]: 6.375 + e-approximation algorithm
for k-means.
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Hardness of k-Means

> [Aloise et al., 2009] [Dasgupta, 2008] [Mahajan et al., 2012]
Optimizing the k-means objective is NP-Hard in the worst
case (even for k =2 or d = 2).

> [Awasthi et al., 2015] There exists an £ > 0 such that it is
NP-Hard to find a clustering which approximates the optimal
k-means cost within a factor of (1 + ¢).



Lloyd's Algorithm

1. Start wit k-centers pq, ..., pix chosen uniformly at random
from the data.

2. Assign all the points to their closest center.

3. Update the centers to the centroid of all the points assigned
to it.

4. Repeat until centers do not change.
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1. Start wit k-centers pq, ..., pix chosen uniformly at random
from the data.

2. Assign all the points to their closest center.

3. Update the centers to the centroid of all the points assigned
to it.

4. Repeat until centers do not change.

» Motivation: Parallel Axis Theorem (for a single cluster):
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Lloyd's can be bad

» Cost of clustering generated by Lloyd's algorithm can be
arbitrarily bad.

» Known worst-case instances where the Lloyd's algorithm can
take exponentially many iterations to converge to a local
optimum.

- [Arthur et al., 2011] Lloyd’s algorithm has a smoothed running
time polynomial in n.



Lloyd’s algorithm behaving bad
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In practice ...

» Clustering algorithms like the Lloyd's algorithm, k-means+-+
algorithm works well on real-world data-sets.

» This dichotomy between the theoretical intractability and the
empirical observations has lead to the CDNM hypothesis:

Clustering is Difficult only when it does Not Matter.
[Daniely, Linial, and Saks, 2012]



Lloyd’s Guarantee

» [Arthur and Vassilvitskii, 2007] Initializing using D?-sampling
followed by Lloyd's iteration gives a O (log k)-approximation.

» [Kumar and Kannan, 2010] For separable data, centers given
by a constant factor approximation to k-means on a “sketch”
of data, followed by Lloyd's iteration gives an exact solution.

» [Chaudhuri et al., 2009] Lloyd's algorithm work well for
mixtures of two Gaussians.
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Why does clustering work well on real-world data?

> In most real-world data, the underlying “ground-truth”
clustering is unambiguous and is “stable” under small
perturbations of the data.

» This kind of phenomenon has lead to the study of “beyond
worst-case analysis” in the TCS community.



Intuition of a “stable” instance
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Formally: Center Proximity

» Proposed by [Awasthi et al., 2012].

> A clustering Cq, ..., Cx with centers p1, ..., piy is called
a-center proximal if

Vx e G, allx —pill <lx =, 17



Value of « in real-world data
» o~ 1.12
Dataset azl104 | az2100]|azl08 |azll|azll2
Wine (k++) 1 0.994 0.989 0.989 0.978
Wine (k++ - pruned) | | 1 | 1
Wine (GT) 1 0.994 0.989 0.989 0.978
Wine (GT - pruned) 1 1 1 1 1
Iris (k++) 0.993 0.993 0.993 0.98 0.98
Iris (k++ - pruned) 1 1 1 1 1
Iris (GT) 0.993 0.993 0.987 0.987 0.98
Iris (GT - pruned) | | 1 | 1
Banknote Auth. (k++) 0.989 0.985 0.98 0976 0.97
Banknote Auth. (k++ - pruned) 0.999 0.999 0.998 0.997 0.992
Banknote Auth. (GT) 0.989 0.985 0.98 0976 0.97
Banknote Auth. (GT - pruned) 0.999 0.999 0.998 0.997 0.992
» o=~ 1.025
Dataset || @2 1.017 | @2 1019 | > 1.021 | o >1.023 | o >1.025
Letter Rec. (k++) 0.966 0.962 0.957 0.952 0.948
Letter Rec. (k++ - pruned) 0.995 0.994 0.994 0.994 0.994
Letter Rec. (GT) 0.964 0.96 0.954 0.949 0.945
Letter Rec. (GT - pruned) 0.995 0.994 0.994 0.994 0.993




Previous Result

[Angelidakis et al., 2017] Can cluster in polynomial time if
1. a>2.

2. The clustering giving the optimal cost solution must be
a-center proximal.



Comments about existing results

» « > 2 is unrealistic. Real-world data doesn't satisfy that.

» [Ben-David, 2018] Clustering giving the optimal-cost solution
need not be the most “stable” clustering.

- All previous works assume that the optimal-cost clustering is
the most stable clustering.

» In practice, people don't care about the optimal-cost solution.
They look for the “ground-truth” clustering.
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» The ground-truth clustering must be the most stable
clustering, i.e., the clustering with the maximum value of «.

» The clusters must be roughly balanced, i.e., the ratio of the
size of largest cluster to the size of smallest cluster must be a
constant.
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Our Algorithmic Result

» Aim: Given a value of «, output a k-clustering such that the
clustering is a-center proximal. Moreover, the clusters must
be roughly balanced.

Theorem

Suppose there exists a k-clustering with roughly-balanced clusters
which is a-center proximal. Our algorithm can output such a
clustering with constant probability in time O (nd2Po¥(k/(a=1)))_

- Comment: In real-world data the value of « is not known. We
can iterate over the values of «.



Proof Sketch
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» All clusters lie in a bounded radius.

» Can make an error in estimating the mean.



Theorem (Sampling)
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radius. Mean of the sample is close to the cluster mean.
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Algorithm

1. Sample poly(k/(a — 1)) points uniformly at random.

- Since the desired clusters are roughly balanced, we get points
from all the clusters.

2. Go over all k-partitions of the sampled points and estimate
the k means.

- At least one partitioning corresponds to the actual clustering,
and one set the means is close to the true set of means.

3. Cluster according to the sampled means, and output the
lowest-cost a-center proximal clustering.
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Class of Qutliers

Let Z be the set of outliers, and suppose we know |Z|.

Definition
For x € Cj, o ||x — pi]| < ||x — pj]|. Moreover, for x € C; and
z € Z, we have a||x — pil| < |z — pjl|.

> Algorithm essentially remains the same. Go over k + 1
partitions of the sampled points and remove the farthest |Z|
points after clustering.



Lower Bound

» [Ben-David and Reyzin, 2014] NP-Hard to cluster for & < 2 in
general metrics.

» Ja, e such that it is NP-Hard to find a clustering which
approximate the optimal a-center proximal Euclidean
k-means, where the clusters are roughly balanced, to a factor
better than (1 + ¢).

» Jo for which we can construct an instance such that the total

number of optimal, balanced a-center proximal clusterings are
opoly(k/(a—1))



Discussions

» We show results for unbalanced clusters as well.

» Can be extended to k-median, or to any objective where the
approximate centers of a cluster can be decided by sampling
uniformly at random.

» Can be adapted to a setting with “same-cluster queries”, with
O (k*log k/(c — 1)) queries, in time O (ndk).

» This kind of technique is very general, and can be extended to
other problems like cost-balanced clustering, topic modelling,
fair clustering, etc.
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