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Method of Moments

* Probability distribution p supported on [—1,1]
* Given noisy moments mq, m,, ... estimate p

m; = [ x/p(x)dx + npise
Wasserstein 1 Distance

* Given &, and noisy moments m4, m,, ..., output g such that
Wl(pl CI) < &.



Wasserstein Distance

Wasserstein-1 distance: Minimum over all schemes of
“moving” one distribution to another, where the cost of
moving one unit of mass from x; in p to x, in q is |x; — x5 |




Dual of Wasserstein Distance

* Wasserstein-1 distance: Minimum over all schemes of "moving”
one distribution to another, where the cost of moving one unit of
mass from x; inp to x, In g IS [x; — x5|.

e Dual:

Wilp,@) = sup [ f@)(p(x) — q(x))dx
f:1—Lipschitz



Aim:

* Given noisy moment estimates of p, output distribution g such
that

Wi(p,q) < ¢

Question: How much noise can we tolerate?

[KV’17, IMSS’23]: Need to estimate my, ..., m, e Moments to
accuracy + exp(—1/¢)



+ exp(—1/¢) to output g such that Wi(p,q) < ¢

[KV’17,IMSS’23]: Need to estimate my, ..., my /. moments to accuracy
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How many samples do we need?

Imagine integrating

m; = [ x7p(x)dx



Getting the Moment Estimates

—1,1], we have that |m;| < 1.

* By Hoeffding’s, we get that

[KV’17,JMSS’23]: Need to estimate
my, ..., My /. MOments to accuracy
+ exp(—1/¢) to output g such that

Wl(p; q) <é&

1
* Let Xy, ..., Xy ~iig P ,then, letim; =— Qiiem) X

* For “vanilla” moments m; = | x/p(x)dx, since p is supported on

J
i .

P("fn‘; — m]-‘ > t) < 2exp(—nt?)

Need n = exp (0 G))




Chebyshev Polynomials (to the rescue)

* The i-th Chebyshev polynomial is denoted by T; fori = 0,1,2, ...

* Defined recursively:

To(x) =1, T(x) =x
T;(x) =2xT;_1(x) — T;_,(x), fori = 2

Chebyshev Polynomials




Chebyshev Moments

* For a distribution p, its j-th Chebyshev moment s

ti = [ Tj(0)p(x)dx

* [BKM’22]: Estimating t; up to error +0(¢) forj = 1,2,...,1/¢
suffices to o/p a distribution q such that W;(p, q) < ¢

* By a similar analysis as before, we only need
n = 0(1/¢?) samples



What If We Have Access to Only Moments?

* In some applications, we do not have access to iid samples

* We have access to noisy moments of the distribution, and we
want to recover the underlying distribution

“Vanilla” moments require very precise estimates of the moments

* [BKM’22]: Estimating first 1/e Chebyshev moments up to error
+ O(¢) suffices to o/p a distribution g such that W;(p,q) < ¢

Our Result - Estimating t; to accuracy iO(\/f g), for

j=1,..,1/¢ suffices!




Why can we afford lower accuracy in higher moments?

50-th Chebyshev Polynomial
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Formal Result

* Let p and g be two distributions supported on [—1,1]. Let k be an
integer

Denote Ex~p[Tj(x)] = ij(x)p(x)dx

k:1jiz(Ex~p[7}'(x)] = Equ[’I‘]-(x)])Z < I'%, then

C
Wilp,q) <+ i

*Setk =1/, T = g,wegetW;(p,q) < 0(¢)



Application 1: SDE

 Spectral Density Estimation: For a symmetric matrix 4 € R® <™,
|All, < 1 with eigenvalues A; = -+ > A,,, its spectral density is

p = Unif({44, ..., 4,})
- Aim: Output a distribution g such that W;(p,q) < ¢
- Equivalently: Output a list of eigenvalues 4, > -+ > I, suchthat — Y7L, |4, — 4| < ¢
- Matrix-Vector Query Model: Given v, we get to observe Av
- Goal: Minimize the number of matrix-vector queriesto A



Spectral Density Estimation

* [BKM’22]: For matrix of size n = Q(1/€?), 0(1/¢) matrix-vector
product with A suffices to estimate the spectral density of A.

Our Result: For matrix of any size, 0(1/¢) matrix-vector
products with A suffices to estimate the spectral density of A.

Our Result: The number of queries is tight up to log factors




Application 2: Differential Privacy

* Given a data-set x4, ..., X,;, we want to generate a differentially
private synthetic data-set which is close to the original data-set

e Motivation: Perform downstream task without the need for a
differentially private algorithm for each use-case

* Our ldea: Noise the Chebyshev moments of the uniform
distribution over the data-set.

 Can noise higher moments more.
» Still recover a distribution close to the original distribution in W; distance.



Formal Result

* Let p and g be two distributions supported on [—1,1]. Let k be an
integer

Denote Ex~p[Tj(x)] = ij(x)p(x)dx

k:1jiz(Ex~p[7}'(x)] = Equ[’I‘]-(x)])Z < I'%, then

C
Wilp,q) <+ i

*Setk =1/, T = g,wegetW;(p,q) < 0(¢)



Proof Sketch

*Recal: Wi(p,q) = sup [ f)(p(x) —q(x))dx
f:1—Lipschitz

* Idea: Represent f, p, g in Chebyshev polynomial basis
f=coteiTi(x) + -+ Ti(x) + Cpyq + -
* Jackson’s Theorem: f;, == cy + ¢, T1(x) + -+ + ¢, T (x) is a good
uniform approximation, ||f — fille < O (1)
k
+ 0@ - a@)dx = [ @ p = a@)dx +I ¢ = f) (b0 - 400)dx)
N c/k




Focus: | fi (x)(p(x) — q(x))dx

Jy 2?=1jlz(Ex~p[Tj(x)] - Ex~q[Tj(x)D2 <T?, then

Recall: fi, == cy + ¢ Ty (x) + -+ + ¢ Ti (x) Wi(p.q) S +T

 After some calculations,

k
J £ ) (p(x) — q(x))dx = 2 J Cj@_ q(x))T; (x)dx
=1

Q(E, - [Ti00] — ExgT0)])

* Cauchy Schwarz: )

S(i(]ch}) 1

j=1




JFO(p(x) — q(0)dx = [ fi () (p(x) — q(0))dx + [ (f — fi) (p(x) — q(x))dx

Story Till Now

e Status: | fk(x)(p(x) — q(x))dx < (Zﬁl(jzcjz))E T

Our Result:
Letf =cy + ¢, T1(x) + ¢, T,(x) + ...bea 1-Lipschitz function. Then,

* We getffk(x)(p(x) — q(x))dx <. m/2.T
[ FE(pG) - a)dx = [FT+E



Open Problem

Letf =co + ¢, T;(x) + ¢, T,(x) + ...be a 1-Lipschitz function. Then,

J=0

* This result does not characterize 1-Lipschitz functions.

* |s there a characterization of 1-Lipschitz functions that maximizes
W, distance?
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