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Method of Moments

• Probability distribution 𝑝 supported on [−1,1]
• Given noisy moments 𝑚1, 𝑚2, … estimate 𝑝

𝑚𝑗 = ∫ 𝑥𝑗𝑝 𝑥 𝑑𝑥 + 𝑛𝑜𝑖𝑠𝑒

• Given 𝜀, and noisy moments 𝑚1, 𝑚2, … , output 𝑞 such that 
𝑊1 𝑝, 𝑞 ≤ 𝜀. 

Wasserstein 1 Distance



Wasserstein Distance

Wasserstein-1 distance: Minimum over all schemes of 
“moving” one distribution to another, where the cost of 
moving one unit of mass from 𝑥1 in 𝑝 to 𝑥2 in 𝑞 is |𝑥1 − 𝑥2|



Dual of Wasserstein Distance

• Wasserstein-1 distance: Minimum over all schemes of “moving” 
one distribution to another, where the cost of moving one unit of 
mass from 𝑥1 in 𝑝 to 𝑥2 in 𝑞 is |𝑥1 − 𝑥2|. 

• Dual: 
𝑊1 𝑝, 𝑞 = sup

𝑓:1−Lipschitz
∫ 𝑓 𝑥 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥



Aim:

• Given noisy moment estimates of 𝑝, output distribution 𝑞 such 
that 

𝑊1(𝑝, 𝑞) ≤ 𝜀

Question: How much noise can we tolerate?
[KV’17, JMSS’23]: Need to estimate 𝑚1, … , 𝑚1/𝜀  moments to 

accuracy ± exp −1/𝜀



[KV’17, JMSS’23]: Need to estimate 𝑚1, … , 𝑚1/𝜀 moments to accuracy 
±  exp −1/𝜀  to output 𝑞 such that 𝑊1 𝑝, 𝑞 ≤ 𝜀

𝑚𝑗 = ∫ 𝑥𝑗𝑝 𝑥 𝑑𝑥 

How many samples do we need?

Imagine integrating



Getting the Moment Estimates

• For “vanilla” moments 𝑚𝑗 = ∫ 𝑥𝑗𝑝 𝑥 𝑑𝑥, since 𝑝 is supported on 
−1,1 , we have that |𝑚𝑗| ≤ 1.

• Let 𝑋1, … , 𝑋𝑛 ∼iid  𝑝 , then, let ෦𝑚𝑗 = 1
𝑛

 σ𝑖∈[𝑛] 𝑋𝑖
𝑗. 

• By Hoeffding’s, we get that 

Ρ ෦𝑚𝑗 − 𝑚𝑗 ≥ 𝑡 ≤ 2exp(−𝑛𝑡2)

•  Need 𝑛 = exp 𝑂 1
𝜀

[KV’17, JMSS’23]: Need to estimate 
𝑚1, … , 𝑚1/𝜀 moments to accuracy 

±  exp −1/𝜀  to output 𝑞 such that 
𝑊1 𝑝, 𝑞 ≤ 𝜀



Chebyshev Polynomials (to the rescue)

• The 𝑖-th Chebyshev polynomial is denoted by 𝑇𝑖  for 𝑖 = 0,1,2, … 
• Defined recursively: 

𝑇0 𝑥 = 1, 𝑇1 𝑥 = 𝑥
                                             𝑇𝑖 𝑥 = 2𝑥 𝑇𝑖−1 𝑥 − 𝑇𝑖−2 𝑥 , for 𝑖 ≥ 2



Chebyshev Moments

• For a distribution 𝑝, its 𝑗-th Chebyshev moment is

𝑡𝑗 ≔  ∫ 𝑇𝑗 𝑥 𝑝 𝑥 𝑑𝑥 

• [BKM’22]: Estimating 𝑡𝑗  up to error ± ෨𝑂(𝜀) for 𝑗 = 1,2, … , 1/𝜀 
suffices to o/p a distribution 𝑞 such that 𝑊1 𝑝, 𝑞 ≤ 𝜀

• By a similar analysis as before, we only need
 𝑛 = ෪𝑂(1/𝜀2) samples 



What If We Have Access to Only Moments?

• In some applications, we do not have access to iid samples
• We have access to noisy moments of the distribution, and we 

want to recover the underlying distribution
                  “Vanilla” moments require very precise estimates of the moments

• [BKM’22]: Estimating first 1/𝜀 Chebyshev moments up to error 
± ෨𝑂(𝜀) suffices to o/p a distribution 𝑞 such that 𝑊1 𝑝, 𝑞 ≤ 𝜀

Our Result → Estimating 𝑡𝑗  to accuracy ±𝑂( 𝑗 𝜀), for 
𝑗 = 1, … , 1/𝜀 suffices!



Why can we afford lower accuracy in higher moments? 

For 𝑝 and 𝑞 far, 
the higher 
Chebyshev 
moments will 
differ more. 



Formal Result

• Let 𝑝 and 𝑞 be two distributions supported on −1,1 . Let 𝑘 be an 
integer

                                                                    Denote Ε𝑥∼𝑝 𝑇𝑗 𝑥 ≔ ∫ 𝑇𝑗 𝑥 𝑝 𝑥 𝑑𝑥 

                   

• Set 𝑘 = 1/𝜀, Γ = 𝜀, we get 𝑊1 𝑝, 𝑞 ≤ 𝑂 𝜀

If  σ𝑗=1
𝑘 1

j2 Ε𝑥∼𝑝 𝑇𝑗 𝑥 − Ε𝑥∼𝑞 𝑇𝑗 𝑥
2

≤ Γ2, then 

𝑊1 𝑝, 𝑞 ≤
𝑐
𝑘

+ Γ



Application 1: SDE

• Spectral Density Estimation: For a symmetric matrix 𝐴 ∈ ℝ𝑛 ×𝑛 , 
𝐴 2 ≤ 1 with eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆𝑛, its spectral density is

𝑝 ≔  Unif 𝜆1, … , 𝜆𝑛

   - Aim: Output a distribution 𝑞 such that 𝑊1 𝑝, 𝑞 ≤ 𝜀
   - Equivalently: Output a list of eigenvalues ሚ𝜆1 ≥ ⋯ ≥ ሚ𝜆𝑛 such that  1

𝑛
σ𝑖=1

𝑛 |𝜆𝑖 − ሚ𝜆𝑖 | ≤ 𝜀

   - Matrix-Vector Query Model: Given 𝑣, we get to observe 𝐴𝑣
   - Goal: Minimize the number of matrix-vector queries to 𝐴



Spectral Density Estimation

• [BKM’22]: For matrix of size 𝑛 = ෩Ω 1/𝜀2 , ෨𝑂 1/𝜀  matrix-vector 
product with 𝐴 suffices to estimate the spectral density of 𝐴. 

 Our Result: For matrix of any size, ෨𝑂 1/𝜀  matrix-vector 
products with 𝐴 suffices to estimate the spectral density of 𝐴. 

Our Result: The number of queries is tight up to log factors 



Application 2: Differential Privacy

• Given a data-set 𝑥1, … , 𝑥𝑛, we want to generate a differentially 
private synthetic data-set which is close to the original data-set

• Motivation: Perform downstream task without the need for a 
differentially private algorithm for each use-case

• Our Idea: Noise the Chebyshev moments of the uniform 
distribution over the data-set. 

• Can noise higher moments more. 
• Still recover a distribution close to the original distribution in 𝑊1 distance.



Formal Result

• Let 𝑝 and 𝑞 be two distributions supported on −1,1 . Let 𝑘 be an 
integer

                                                                    Denote Ε𝑥∼𝑝 𝑇𝑗 𝑥 ≔ ∫ 𝑇𝑗 𝑥 𝑝 𝑥 𝑑𝑥 

                   

• Set 𝑘 = 1/𝜀, Γ = 𝜀, we get 𝑊1 𝑝, 𝑞 ≤ 𝑂 𝜀

If  σ𝑗=1
𝑘 1

j2 Ε𝑥∼𝑝 𝑇𝑗 𝑥 − Ε𝑥∼𝑞 𝑇𝑗 𝑥
2

≤ Γ2, then 

𝑊1 𝑝, 𝑞 ≤
𝑐
𝑘

+ Γ



Proof Sketch

• Recall: 𝑊1 𝑝, 𝑞 = sup
𝑓:1−Lipschitz

∫ 𝑓 𝑥 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥

• Idea: Represent 𝑓, 𝑝, 𝑞 in Chebyshev polynomial basis
𝑓 = 𝑐0 + 𝑐1𝑇1 𝑥 + ⋯ + 𝑐𝑘𝑇𝑘 𝑥 + 𝑐𝑘+1 + ⋯

• Jackson’s Theorem: 𝑓𝑘 ≔ 𝑐0 + 𝑐1𝑇1 𝑥 + ⋯ + 𝑐𝑘𝑇𝑘 𝑥  is a good 
uniform approximation, 𝑓 − 𝑓𝑘 ∞ ≤ 𝑂 1

𝑘
. 

•  ∫ 𝑓 𝑥 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥 = ∫ 𝑓𝑘 𝑥 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥 + ∫ (𝑓 − 𝑓𝑘) 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥

𝑐/𝑘



Focus: ∫ 𝑓𝑘 𝑥 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥

Recall: 𝑓𝑘 ≔ 𝑐0 + 𝑐1𝑇1 𝑥 + ⋯ + 𝑐𝑘𝑇𝑘 𝑥
• After some calculations, 

∫ 𝑓𝑘 𝑥 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥 = 
𝑗=1

𝑘

∫ 𝑐𝑗 𝑝 𝑥 − 𝑞 𝑥 𝑇𝑗 𝑥 𝑑𝑥

• Cauchy Schwarz: 

≤ 
𝑗=1

𝑘

(𝑗2𝑐𝑗
2)

1
2

. 
𝑗=1

𝑘
1
j2 Ε𝑥∼𝑝 𝑇𝑗 𝑥 − Ε𝑥∼𝑞 𝑇𝑗 𝑥 2

1/2

Ε𝑥∼𝑝 𝑇𝑗 𝑥 − Ε𝑥∼𝑞 𝑇𝑗 𝑥

≤ Γ

If  σ𝑗=1
𝑘 1

j2 Ε𝑥∼𝑝 𝑇𝑗 𝑥 − Ε𝑥∼𝑞 𝑇𝑗 𝑥
2

≤ Γ2, then 

𝑊1 𝑝, 𝑞 ≤
𝑐
𝑘

+ Γ



Story Till Now 

• Status: ∫ 𝑓𝑘 𝑥 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥 ≤ σ𝑗=1
𝑘 (𝑗2𝑐𝑗

2)
1
2 . Γ

• We get ∫ 𝑓𝑘 𝑥 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥 ≤ 𝜋/2 . Γ

•  ∫ 𝑓 𝑥 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥 = 𝜋
2

Γ + 𝑐
𝑘

.

Our Result: 
Let 𝑓 = 𝑐0 +  𝑐1𝑇1 𝑥 + 𝑐2𝑇2 𝑥 + … be a 1-Lipschitz function. Then, 


𝑗=0

∞

(𝑗2𝑐𝑗
2) ≤

𝜋
2

∫ 𝑓 𝑥 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥 = ∫ 𝑓𝑘 𝑥 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥 + ∫ (𝑓 − 𝑓𝑘) 𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥



Open Problem

• This result does not characterize 1-Lipschitz functions. 
• Is there a characterization of 1-Lipschitz functions that maximizes 

𝑊1 distance?

Let 𝑓 = 𝑐0 +  𝑐1𝑇1 𝑥 + 𝑐2𝑇2 𝑥 + … be a 1-Lipschitz function. Then, 


𝑗=0

∞

(𝑗2𝑐𝑗
2) ≤

𝜋
2
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