Sharper Bounds for Chebyshev Moment Matching with Applications

(Apoorv Vikram Singh) (NYU)

Joint work with: Cameron Musco, Christopher Musco, and Lucas Rosenblatt (UMass Amherst) (NYU) (NYU)

Method of Moments

- Probability distribution p supported on [-1,1]
- Given noisy moments $\widetilde{m}_1, \widetilde{m}_2, \dots$ estimate p

$$\widetilde{m}_j = \int x^j p(x) dx + noise$$

Wasserstein 1 Distance

• Given ε , and noisy moments $\widetilde{m}_1, \widetilde{m}_2, \dots$, output q such that $W_1(p,q) \leq \varepsilon$.

Wasserstein Distance

Wasserstein-1 distance: Minimum over all schemes of "moving" one distribution to another, where the cost of moving one unit of mass from x_1 in p to x_2 in q is $|x_1 - x_2|$

Dual of Wasserstein Distance

- Wasserstein-1 distance: Minimum over all schemes of "moving" one distribution to another, where the cost of moving one unit of mass from x₁ in p to x₂ in q is |x₁ − x₂|.
- Dual:

$$W_1(p,q) = \sup_{f:1-\text{Lipschitz}} \int f(x) (p(x) - q(x)) dx$$

Aim:

 \bullet Given noisy moment estimates of p , output distribution q such that

 $W_1(p,q) \leq \varepsilon$

Question: How much noise can we tolerate? [KV'17, JMSS'23]: Need to estimate $m_1, \dots, m_{1/\epsilon}$ moments to accuracy $\pm \exp(-1/\epsilon)$ [KV'17, JMSS'23]: Need to estimate $m_1, \dots, m_{1/\epsilon}$ moments to accuracy

 $\pm \exp(-1/\varepsilon)$ to output q such that $W_1(p,q) \le \varepsilon$

Imagine integrating $m_j = \int x^j p(x) dx$

How many samples do we need?

Getting the Moment Estimates

[KV'17, JMSS'23]: Need to estimate $m_1, \dots, m_{1/\varepsilon}$ moments to accuracy $\pm \exp(-1/\varepsilon)$ to output q such that $W_1(p,q) \le \varepsilon$

- For "vanilla" moments $m_j = \int x^j p(x) dx$, since p is supported on [-1,1], we have that $|m_j| \le 1$.
- Let $X_1, \ldots, X_n \sim_{\text{iid}} p$, then, let $\widetilde{m_j} = \frac{1}{n} \sum_{i \in [n]} X_i^j$.
- By Hoeffding's, we get that

$$\mathbb{P}\big(\big|\widetilde{m_j} - m_j\big| \geq t\big) \leq 2\exp(-nt^2)$$

• Need $n = \exp\left(O\left(\frac{1}{\varepsilon}\right)\right)$

Chebyshev Polynomials (to the rescue)

- The *i*-th Chebyshev polynomial is denoted by T_i for i = 0, 1, 2, ...
- Defined recursively:

$$T_0(x) = 1, \quad T_1(x) = x$$

$$T_i(x) = 2x T_{i-1}(x) - T_{i-2}(x), \text{ for } i \ge 2$$

Chebyshev Moments

• For a distribution *p*, its *j*-th Chebyshev moment is

$$t_j \coloneqq \int T_j(x)p(x)dx$$

- [BKM'22]: Estimating t_j up to error $\pm \tilde{O}(\varepsilon)$ for $j = 1, 2, ..., 1/\varepsilon$ suffices to o/p a distribution q such that $W_1(p,q) \le \varepsilon$
- By a similar analysis as before, we only need

$$n = \widetilde{O}(1/\varepsilon^2)$$
 samples

What If We Have Access to Only Moments?

- In some applications, we do not have access to iid samples
- We have access to noisy moments of the distribution, and we want to recover the underlying distribution

"Vanilla" moments require very precise estimates of the moments

• [BKM'22]: Estimating first $1/\varepsilon$ Chebyshev moments up to error $\pm \tilde{O}(\varepsilon)$ suffices to o/p a distribution q such that $W_1(p,q) \le \varepsilon$

Our Result \rightarrow Estimating t_j to accuracy $\pm O(\sqrt{j} \epsilon)$, for $j = 1, ..., 1/\epsilon$ suffices!

Why can we afford lower accuracy in higher moments?

Formal Result

Let p and q be two distributions supported on [-1,1]. Let k be an integer

Denote $\mathbb{E}_{x \sim p} [T_j(x)] \coloneqq \int T_j(x) p(x) dx$

If
$$\sum_{j=1}^{k} \frac{1}{j^2} \left(\mathbb{E}_{x \sim p} \left[T_j(x) \right] - \mathbb{E}_{x \sim q} \left[T_j(x) \right] \right)^2 \leq \Gamma^2$$
, then
 $W_1(p,q) \leq \frac{c}{k} + \Gamma$

• Set $k = 1/\varepsilon$, $\Gamma = \varepsilon$, we get $W_1(p,q) \le O(\varepsilon)$

Application 1: SDE

- Spectral Density Estimation: For a symmetric matrix $A \in \mathbb{R}^{n \times n}$, $\|A\|_2 \leq 1$ with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$, its spectral density is $p \coloneqq \text{Unif}(\{\lambda_1, \dots, \lambda_n\})$
 - Aim: Output a distribution q such that $W_1(p,q) \leq \varepsilon$
 - Equivalently: Output a list of eigenvalues $\tilde{\lambda}_1 \ge \cdots \ge \tilde{\lambda}_n$ such that $\frac{1}{n} \sum_{i=1}^n |\lambda_i \tilde{\lambda}_i| \le \varepsilon$
 - Matrix-Vector Query Model: Given v, we get to observe Av
 - Goal: Minimize the number of matrix-vector queries to A

Spectral Density Estimation

• [BKM'22]: For matrix of size $n = \tilde{\Omega}(1/\epsilon^2)$, $\tilde{O}(1/\epsilon)$ matrix-vector product with A suffices to estimate the spectral density of A.

Our Result: For matrix of any size, $\tilde{O}(1/\varepsilon)$ matrix-vector products with A suffices to estimate the spectral density of A.

Our Result: The number of queries is tight up to log factors

Application 2: Differential Privacy

- Given a data-set x_1, \ldots, x_n , we want to generate a differentially private synthetic data-set which is close to the original data-set
- Motivation: Perform downstream task without the need for a differentially private algorithm for each use-case
- Our Idea: Noise the Chebyshev moments of the uniform distribution over the data-set.
 - Can noise higher moments more.
 - Still recover a distribution close to the original distribution in W_1 distance.

Formal Result

Let p and q be two distributions supported on [-1,1]. Let k be an integer

Denote $\mathbb{E}_{x \sim p} [T_j(x)] \coloneqq \int T_j(x) p(x) dx$

If
$$\sum_{j=1}^{k} \frac{1}{j^2} \left(\mathbb{E}_{x \sim p} \left[T_j(x) \right] - \mathbb{E}_{x \sim q} \left[T_j(x) \right] \right)^2 \leq \Gamma^2$$
, then
 $W_1(p,q) \leq \frac{c}{k} + \Gamma$

• Set $k = 1/\varepsilon$, $\Gamma = \varepsilon$, we get $W_1(p,q) \le O(\varepsilon)$

Proof Sketch

- Recall: $W_1(p,q) = \sup_{f:1-\text{Lipschitz}} \int f(x) (p(x) q(x)) dx$
- Idea: Represent f, p, q in Chebyshev polynomial basis $f = c_0 + c_1 T_1(x) + \dots + c_k T_k(x) + c_{k+1} + \dots$
- Jackson's Theorem: $f_k \coloneqq c_0 + c_1 T_1(x) + \dots + c_k T_k(x)$ is a good uniform approximation, $\|f f_k\|_{\infty} \le O\left(\frac{1}{k}\right)$.
- $\int f(x)(p(x) q(x))dx = \int f_k(x)(p(x) q(x))dx + \int (f f_k)(p(x) q(x))dx$

Focus:
$$\int f_k(x)(p(x) - q(x))dx$$

Recall: $f_k \coloneqq c_0 + c_1 T_1(x) + \dots + c_k T_k(x)$

If $\sum_{j=1}^{k} \frac{1}{j^2} \left(\mathbb{E}_{x \sim p} \left[T_j(x) \right] - \mathbb{E}_{x \sim q} \left[T_j(x) \right] \right)^2 \leq \Gamma^2$, then $W_1(p,q) \leq \frac{c}{k} + \Gamma$

• After some calculations,

$$\int f_k(x) (p(x) - q(x)) dx = \sum_{j=1}^k \int c_j (p(x) - q(x)) T_j(x) dx$$

$$\int (E_{x \sim p}[T_j(x)] - E_{x \sim q}[T_j(x)]) dx = \sum_{j=1}^k \int c_j (p(x) - q(x)) T_j(x) dx$$

• Cauchy Schwarz:

$$\leq \left(\sum_{j=1}^{k} (j^{2}c_{j}^{2})\right)^{\frac{1}{2}} \cdot \left(\sum_{j=1}^{k} \frac{1}{j^{2}} \left(E_{x \sim p} \left[T_{j}(x) \right] - E_{x \sim q} \left[T_{j}(x) \right] \right)^{2} \right)^{\frac{1}{2}} \leq \Gamma$$

 $\int f(x)\big(p(x) - q(x)\big)dx = \int f_k(x)\big(p(x) - q(x)\big)dx + \int (f - f_k)\big(p(x) - q(x)\big)dx$

Story Till Now

• Status:
$$\int f_k(x) (p(x) - q(x)) dx \le (\sum_{j=1}^k (j^2 c_j^2))^{\frac{1}{2}} \cdot \Gamma$$

Our Result:
Let
$$f = c_0 + c_1 T_1(x) + c_2 T_2(x) + \dots$$
 be a 1-Lipschitz function. Then,
$$\sum_{j=0}^{\infty} (j^2 c_j^2) \le \frac{\pi}{2}$$

• We get $\int f_k(x) (p(x) - q(x)) dx \le \sqrt{\pi/2} \cdot \Gamma$

•
$$\int f(x)(p(x)-q(x))dx = \sqrt{\frac{\pi}{2}} \Gamma + \frac{c}{k}.$$

Open Problem

- This result does not characterize 1-Lipschitz functions.
- Is there a characterization of 1-Lipschitz functions that maximizes W_1 distance?