Discrepancy Theory
Reading Group, May 6.

INTRO:

$$
\begin{array}{rlr}
V & =\{1, \ldots, n\} \\
S & =\left\{s_{1}, \ldots, s_{m}\right\}, & S_{i} \in[n], \forall i \in[m] \\
X: V \longmapsto\{-1,+1\}, & \\
x\left(s_{i}\right)=\left|\sum_{j \in s_{i}} x(j)\right|, & x\left(s_{1}\right)=0 \\
x\left(s_{s}\right)=2
\end{array}
$$

RESULTS:
\longrightarrow Non Constructive.

* Theorem (Spence'85): $|V|=n,|\$|=m$

$$
\begin{array}{r}
f X: v \rightarrow\{-1,1\} \text { s.t. } X(S)<k \sqrt{n \log _{2}(m / n)} . \\
k=5 \text { for } m=n .
\end{array}
$$

\longrightarrow Constructive

* Theorem (Basal '10): Randomized poly time algo. to find coloring with $\operatorname{dis} C \quad O(\sqrt{n \log (m / n)})$.

SPENSER'S RESULT:

* Theorem (Spence'85): $|V|=n,|S|=m$

$$
f X: V \rightarrow\{-1,1\} \text { s.t. } \quad X(s)<k \sqrt{n \log _{2}(2 m / n)}
$$

Spenser showed: \exists partial coloring $y \in\{-1,0,1\}^{n}$ s.t. $y(S) \leq O(\sqrt{|V|})$, s.t. $|y| \geqslant \frac{n}{2}$.
\Rightarrow Suffices to prove the theorem:

1. Find a partial coloring. $\binom{1 / 2}{$ elements oared $\pm 1}$
2. Recurse on remaining
uncoloured elements.
\Rightarrow Step 1: n/2 elements get colored with disc O($\left.\sqrt{n \log \frac{m}{n}}\right)$
Step 2: Remaining $\leq n / 2$ elements get colored mike disc $O\left(\sqrt{\frac{4}{2} \log 2 m} n\right)$

Step log: all element get colored. with disc $\theta(\sqrt{\log m})$
Total Discrepancy:

$$
\begin{aligned}
& O\left(\sqrt{n \log _{2} m} n\right)+\theta\left(\sqrt{\frac{y}{2} \log 2 m}\right)+\cdots+\theta(\sqrt{1 \cdot \log m}) \\
& \approx \sqrt{n \log _{n}^{m}}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{4}}+\cdots+\frac{1}{\sqrt{2^{\log n}}}\right)+C=O(\sqrt{n \operatorname{lon}(n)} \\
& m=n
\end{aligned}
$$

\therefore Partial Colouring Suffices.

RE-FRAMING PROBLEM:

$$
\begin{aligned}
& V=[n], \quad S=\left\{S_{1}, \ldots, S_{m}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{dis}(S)=\min _{x \in\{-1,1\}^{n}}\|A x\|_{\infty} . \\
& x\left(S_{i}\right)=\left|A_{i} \cdot x\right|
\end{aligned}
$$

VECTOR BALANCING:

$$
\begin{aligned}
& v_{1} v_{2} v_{3} \ldots v_{n} \\
& A:=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & \cdots & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & \cdots & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccccccc}
-1 & -113 \\
+1 & -13 \\
-1 & \vdots \\
-1 & \vdots & 1 & 1 & 1 & \cdots & 0
\end{array}\right) \\
& A x=-1\binom{v_{1}}{v_{1}}+1\left(\begin{array}{l}
1 \\
v_{2} \\
1
\end{array}\right)-1\binom{\dot{v}_{3}}{1}-1\left(\begin{array}{l}
\dot{v} \\
1 \\
1
\end{array}\right) \cdots-1\binom{\dot{v}}{1}
\end{aligned}
$$

\therefore Given vectors v_{1}, \ldots, v_{n}, s.t. $\left\|v_{i}\right\| \leqslant O(\sqrt{m})$ find a signing $x \in\{-1,+1\}^{\text {n }}$ s.t.
$\|A x\|_{\infty}$ is minimized.

CONVEX GEOMETRY VIEW (seamindof runcecarad)

* Theoren (Giannoporlons'97)

Let $K \subseteq \mathbb{R}^{n}$ be a symuncric $c x x$. body $s t$. $r_{n}(k) \geqslant e^{-\delta n} \rightarrow$ gouncian measune of $k, i e$;

$$
\left(\frac{1}{2 \pi} \int_{k} e^{-1 \pi x) / 2 x} d v e^{-i d n}\right)
$$

and $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$ be $\left\|v_{i}\right\|_{2} \leqslant \delta$
Then f partial coloring $y_{1} \ldots, y_{m} \in\{-1,0+1\}$ \mid cupp $(y) \mid \geqslant(\sqrt[3]{2})$ s.t.

$$
\sum_{i=1}^{m} y_{i} v_{i} \in 2 k
$$

WHY, HOW CVX. GEOM. RELEVANT ???
Consider $K=\left\{\begin{array}{l}x \in \mathbb{R}^{u} \\ x \in\left\{-1, B^{n}\right.\end{array}\left|\sum_{j \in S_{i}} x_{j}\right| \leq \theta(\sqrt{n(\log 2 \pi n}) \stackrel{+i \in \operatorname{cosin}}{=}\right\}$
$\stackrel{v_{1}, \ldots, v_{n}}{\stackrel{\mathbb{R}^{n}}{\Longrightarrow}}$ be standard basis rec.
Let y be the partial coloring \sim (surf $y=3 n)$

$$
\tilde{x}=\left(\begin{array}{c}
-1 \\
\vdots \\
\vdots \\
1
\end{array}\right)=\frac{\tilde{x}=-1 v_{1}+1 v_{2}-0 v_{3}-1 v_{4}+0 v_{5} \cdots+1 v_{n}}{\text { Giamnopoulons } \Rightarrow \tilde{x} \in 2 k \quad \forall \tilde{x}=\{ \pm 1,0\}}
$$

\therefore we found a partial coloring \tilde{c} st.

$$
\tilde{x}(\tilde{s}) \leq 2 \theta\left(\sqrt{\log _{1}}\right)
$$

PROOF SKETCH: (gina' 97)
Let k s.t. $, r_{n}(k) \geqslant \frac{1}{2},\left(\begin{array}{l}\text { shaded union }\left(1 \frac{1}{2}\right)\end{array}\right.$

Let v_{1}, \ldots, v_{n} be $s t d$ basis rectors (holds jor any Consider all 2^{m} translates of k

$$
\text { ie. } \sum_{i=1}^{n} \frac{y_{i} v_{i}}{4}+k, y_{i} \in\{ \pm 1\}
$$

Total measure of translates: $\quad(n \geqslant 7)$

$$
\begin{aligned}
& \gamma_{n}\left(\sum_{y}\left(\sum \frac{y_{i} v_{i}}{4}+k\right)\right) \\
& =\int_{R^{n}} \sum_{y} \mathbb{1}\left\{\frac{\left.\sum y_{i} \cdot x+k\right\}(x)}{4} \quad r_{n}(d x)\right. \\
& \geqslant \int_{\mathbb{R}^{n}} \sum_{y} \mathbb{1}\{k\} e^{-\frac{\left\|\sum y_{i} i_{i}\right\|^{2}}{16 \cdot 2}} \gamma_{n}(d x) \\
& \geqslant 2^{n} e^{-n / 2,} \cdot \gamma_{n}(k) \quad\left(\because\left\|\Sigma y_{i} ; i_{i}\right\|^{2}=n\right) \\
& \geqslant 2^{\left(1-\frac{1}{32 \log 2}-\frac{1}{n}\right) n} \geqslant 2^{\left(1-\frac{1}{32 \log 2}-\frac{1}{2}\right) n} \\
& \geqslant 2^{H(1 / n) n}
\end{aligned}
$$

Where H is the binary entropy function

$$
H(\alpha)=-\alpha \log \alpha-(1-\alpha) \log (1-\alpha)
$$

\therefore The total measure of translates is HUEE !!!
\Rightarrow There are a LOT of orel laps bow trans lakes.

In fact, the number of orel laps one于 subset A of $\{-1,1\}^{n}$ with $|A| \geqslant 2^{H(t / 3) n}$ st.

$$
\xlongequal{\bigcap_{y \in A}\left(\underline{\left.\frac{\sum y_{i} i_{i}}{4}+k\right)} \neq \varnothing \quad(\text { Pigeon- Hole })\right.}
$$

[Klietman's Result] $\Rightarrow \exists y^{\prime}, y^{\prime \prime} \in A$ st.

$$
\left|\left\{i: y_{i}^{\prime}=y_{i}^{\prime \prime}\right\}\right| \leq n / 2 \times \frac{\sum y_{i} r_{i}-\sum y_{i}^{\prime \prime} i_{i}}{4} \in 2 k
$$

* WHAT HAPPENS IF I COLOUR RANDOMLY?
- Recall: $A=\binom{a_{1}-}{a_{2}}, a_{i} \in \mathbb{R}^{n}$. Find $\left.\begin{array}{l}\text { Find } \\ \text { sit. }\end{array} \quad\|A x\|_{1}\right\}^{n}$ is small.
- Let $x_{1}, \ldots, x_{n} \stackrel{i c a}{\sim} \operatorname{mij}\{ \pm 1\}$.

Chernoff:

Union Bol:

$$
\begin{aligned}
& \mathbb{P}\left(\left|a_{j}^{\top} x\right| \leq \lambda_{j} \sqrt{n}, \forall j \in[m]\right) \geqslant 1-2\left(e^{-\lambda^{2} / 2}+\cdots+e^{-\lambda^{2} / 2}\right) \\
& \text { If } \sum_{j=1}^{m} e^{-\lambda_{j}^{2} / 2}<\frac{1}{2} \Rightarrow \mathbb{P}\left(\left|a_{j}^{\top} x\right| \leq \lambda_{j} \sqrt{n}, t_{j}\right)>0
\end{aligned}
$$

Since we want uniform bound

$$
\lambda_{j} \geqslant \sqrt{2 \log 2 m}, \forall j \in[m]
$$

\therefore Probabilistic method gives

$$
\|A x\|_{\infty}=\max _{j} \lambda_{j} \sqrt{n}=O(\sqrt{2 n \log 2 m})
$$

\therefore Random Coloring gives $O(\sqrt{n \log m})$
Spence gave $\theta(\sqrt{n \log 2 m / n})$

$$
\begin{aligned}
& \Rightarrow \text { for } m=n \\
& \text { random coloring }=(\sqrt{n \log n}) \\
&=\theta(\sqrt{n})
\end{aligned}
$$

* CONS TRUCTIVE DISCREPANCY MINIMIZATION (Lovette Mere)

Idea: Recall the figure:

\therefore Also:
\therefore Also. \approx fractional partial coloring hit racidan walk prom center till you hit face then do r.w. along kat face fill
yon stop.

FORMALLY:

* Theorem (Lorette-Metea '12): Let $a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$, $x_{0} \in[-1,1]^{n}$ be "starting point". Let $\lambda_{1}, \ldots, \lambda_{m} \geqslant 0$ be thresholds s.t. $\sum_{j=1}^{m} \exp \left(-\lambda_{j}^{2} / 16\right) \leq \frac{n}{16}$. Then

7 rand. algo wop. 0.1 finds $x \in[-1,1]^{n}$ sit.
(i) $\left|\left\langle x-x_{0}, a_{j}\right\rangle\right| \leqslant \lambda j\left\|a_{j}\right\|_{2}$
(ii) $\left|x_{i}\right| \geqslant 1-\delta$, for at least $n / 2$ indices $i \in[n]$, for some small $\delta>0$.

DIGESTING THE THEOREM
Let $\left\|a_{1}\right\|=\cdots=\left\|a_{n}\right\|=1$

$$
P:=\{x \in \mathbb{R}^{n}: \underbrace{\left|x_{i}\right| \leq 1 \forall i \in[n]}_{\begin{array}{c}
\text { variable } \\
\text { Constraint }
\end{array}}, \underbrace{\left|\left\langle x-x_{0}, a_{j}\right\rangle\right| \leq \lambda_{j}}_{\begin{array}{c}
\text { Discrepancy } \\
\text { Conshoint }
\end{array}}, \forall j \in(m)\}
$$

The theorem can be rephrased as:
$F x \in P$ which satisfy $n / 2$ variable constraint tighky (mikont any slack)
Algo: random walk till you hit a constraint. Then walk in or thogonal subset.
\Rightarrow As long as $\sum \exp \left(-\lambda_{j}^{2}\right) \ll n$, the row. hits many variable constraint.
ARGO:

$$
\begin{aligned}
& C_{t}^{\text {var }}:=C_{t}^{\operatorname{var}}\left(x_{t-1}\right)=\left\{i \in[n]:\left(x_{t-1}\right)_{i} \geqslant 1-\delta\right\} \\
& C_{t}^{\text {disc }}:=c_{t}^{\text {disc }}\left(x_{t-1}\right)=\left\{\text { i } \in[n]:\left\langle x_{t-1}-x_{0}, a_{j}\right\rangle \geqslant \lambda j-\delta\right\} \\
& \nu_{t}:=\nu_{t}\left(x_{t-1}\right)=\text { orthogonal cusp. ho } C_{t}^{\gamma_{0}}, c_{t}^{\alpha_{i}} \\
& =\left\{\begin{aligned}
& u \in \mathbb{R}^{n}: x_{i}=0 \forall i \in C_{t}^{\text {var }} \\
&\left\langle u, a_{j}\right\rangle=0 \quad \forall j \in c_{t}^{\text {sic }}
\end{aligned}\right\} \\
& X_{t}=X_{t \rightarrow}+\gamma U_{t}
\end{aligned}
$$

Run the procedure for $x_{1}, \ldots, x_{T}, T=O\left(1 / r^{2}\right)$.

Paramefer Setfings:

$$
\begin{aligned}
& r \leqslant \frac{\delta}{\sqrt{C \log (m n / \gamma)}} \\
& T=O\left(\frac{1}{\gamma^{2}}\right)
\end{aligned}
$$

$\gamma \Rightarrow$ small sfep lige. $\}$
$\delta>0$ is also small.
affects munning time of alq0.

PROOF SKETCH
2. W.w.p. $x_{1}, \ldots, x_{T} \in P$
\rightarrow If it violates this condition at any step, \Rightarrow

$$
x_{t}=x_{t-1}+r_{t} u_{t}
$$

\rightarrow large \Rightarrow low fob.

PROOF SKETCH
2. Since $\sum \exp \left(-\lambda_{j}^{2} / 16\right) \leq n / 16$

$$
\mathbb{E}\left|C_{T}^{\text {ac }}\right| \ll n
$$

Because: $\mathbb{E}\left|C_{T}^{\text {var }}\right|=\Omega(n)$
If $(t<T),\left|C_{t}^{r a r}\right|$ is big we are done
if $\left|C_{t}^{\text {disc }}\right|$ is small $\Rightarrow \operatorname{dim}\left(\nu_{t-1}\right)$ large
$\Rightarrow \mathbb{E}\left\|X_{t}\right\|^{2}$ increases significantly
$<\quad\left\|x_{t}\right\|^{2} \leqslant n \quad\left(\because x_{1}, \ldots, x_{T} \in P\right)$
$\Rightarrow \mathbb{E}\left|C_{T}^{\text {vax }}\right|$ mill be large.

- SOME INTUITION ABOUT $\sum \exp \left(-\lambda_{j}^{2}\right) \ll n$

$$
\begin{aligned}
& K=\left\{x \in \mathbb{R}^{n}| |\left\langle x, a_{j}\right\rangle \mid \leq \lambda_{j} \quad \forall j \in[m]\right\} \\
& S_{i}=\left\{x \in \mathbb{R}^{n}| |\left\langle x, a_{i}\right\rangle \mid \leq \lambda_{i}\right\}, \quad \forall i \in[m] \\
& K=\prod_{i \in \in m]} s_{i} \\
& \gamma_{n}(k) \geqslant \prod_{i=1}^{m} \gamma_{n}\left(s_{i}\right) \geqslant \prod_{i=1}^{m} \exp \left(-2 e^{-\lambda^{2} / 2 / 2}\right) \\
& \geqslant e^{-n / 500} \\
& \gamma_{n}\left(s_{i}\right)=\Phi\left(\lambda_{i}\right) \geqslant 1-e^{-\lambda^{2} / 2} \geqslant \exp \left(-2 e^{-\lambda^{2} / 2 / 2}\right)
\end{aligned}
$$

In fact: $\quad \sum \exp \left(-\lambda_{i}^{2} / 6\right)<\frac{n}{16}$,

- I can set constant number of λ_{i} to be 0 , ie 0 disc jor $\Omega(n)$ sets.
- Compare mite random coloring:

We needed

$$
\sum \exp \left(-\lambda_{i}^{2} / 2\right)<\frac{1}{2} .
$$

\Rightarrow Much sirongel than random coloring.

\|													
π													
π													

