Counting Bases of a Matroid. (Anari, Liu, Oveis Gharan, Vinzant) STOC 2019

Apoorv Vikram Singh

Sept 16, 2022

Markov Chains

• Sequence of
$$\gamma \cdot v \cdot X_t \equiv M \cdot C \cdot J$$

 $P(X_{t+1} = \gamma | X_0 = n_0, \dots, X_t = n_t) = P(X_{t+1} = \gamma | X_t = n_t)$
• $P(n, \gamma) = P(X_{t+1} = \gamma | X_t = n)$
 $(n \to \infty)$

t-step distribution: $P^{t}(x,y) = S P(x,y), \quad t=1$ $\sum_{z \in S} P(x,z) P^{t'}(z,y), \quad t>1$

$$\forall x, y \in \Omega$$
, $(t P^{t}(x, y) = \pi(y)$.

* <u>Ruk</u>: For ergodic MC when P is symmetric $\forall x, y \in \Sigma$ P(x, y) = P(y, x)Here TT is uniform over Σ .

$$T_{\text{mix}}(\varepsilon) := \max_{\substack{X \in \Sigma}} \min \{t: d_{\pi v}(P(X_{o}, \cdot), \pi) \le \varepsilon'\}$$

⇒ Time until chain "mixes" ie nithin TV dist ∈ e prom worst initial state. REMARKS:

· Approximate counting · Almost unif Sampling are related.

Exact Counter \Rightarrow Exact Sampler U Approx Counter \iff Approx. Sampler

* Counting Matchings in a graph (MG)

- · G=(V,E) e1,..., em EE.
- · Consider seq. of graphs $G_0 = G$, $G_1 = G_0 \setminus e_1$, ..., $G_1 = G_{i-1} \setminus e_i$, ... $G_m = G_{m-1} \setminus e_m = (v_s \phi)$ $\times |\mathcal{M}(G_m)| = 1$. $\times |\mathcal{M}(G_0)| = |\mathcal{M}(G_0)|$.

$$\frac{1}{|\mathcal{M}(G_{0})|} = \frac{|\mathcal{M}(G_{0})|}{|\mathcal{M}(G_{0})|} \cdot \frac{|\mathcal{M}(G_{1})|}{|\mathcal{M}(G_{0})|} \cdot \frac{|\mathcal{M}(G_{m})|}{|\mathcal{M}(G_{m-1})|}$$

$$P_{i}^{2} = \frac{|\mathcal{M}(G_{i})|}{|\mathcal{M}(G_{i-1})|} \cdot \cdot |\mathcal{M}(G_{0})| = \prod_{i} \chi_{p_{i}}$$

· Bounding t: :) M(Ge) ⊆ M(Ge-1)

 $\widetilde{\mathcal{M}}(G_{i-1})$

္လို

 (\mathcal{M}_{Gi}) » \forall MG $\mathcal{M}_{Gi-1} \setminus \mathcal{M}_{Gi}$ M \mathbb{E}_{i-1} \mathcal{H} \mathcal{M}_{Gi} $\frac{1}{2} \leq p_{c}^{2} \leq 1$

APPROXIMATING pr

The praction of matchings in Gi-1 that do NOT contain 2 ei3 to error ± Efm.

· Idea: Use Approx Sampler. TT = Nnif (M(Gi-1)) A = } MEGi-1 : ei& My · Use approx unif sampler : M ort. 11-71/17 5 From $|\mathbb{P}_{M \sim M} [M \in A] - \mathbb{P} [M \in A]| \leq \frac{\varepsilon}{20m}$ \Rightarrow $p_i - \frac{E}{ROM} \leq \frac{P}{MVA} [MEA] \leq p_i + \frac{E}{20M}$

... By Chemos, it is enough to generate $O\left(\left(\frac{m}{\epsilon^{2}}\right)\log\left(\frac{m}{\epsilon}\right)\right)$ matchings from \mathcal{M} and compute practions raat are in A.

Total complexity (samples): $pdy\left(\begin{array}{c} og\left(\begin{array}{c} Cm^2 \\ \overline{e^2} \end{array} \right) \right)$

STATUS:

Approx Unif Sampling Approx Counting

Better than birthday paradox argument

* Counting Bases of a Matroid

* Matroid

II <u>Examples:</u> (G,I) • G= (V,E) I- ESEE | S contains no cycles y Maximum size S are called Spanning Trees. · <u>Lineae Matroid</u> I= SS= {v1,..., vn} | S has linearly v2

Definition: MATROID ΠJ [n] = { 1, ..., ny > ground set $I \subseteq 2^{(n)}$ s.t. I is downward dosed / simplicial Glx. Prop 1: SEI, TES => TEI .e Prop 2: (Exchange) S, TEIY => Feets st. Steer. |T| > |S|

• Geometric Definition of a Matroid
Arm: Giron: Collection of sets F from ground set Cnj.
Determine: If they form basis of come matroid
APPProter: consider the set of indicator vectors of Basis.

$$SI_B$$
: $B \in F^2$ $I_B : (0,0,1,0,1,...,0,1,0)$
itoms in basis
• Consider the Matroid polytope
Conv-hull $SI_B : B \in F^2$

* Theorem:

* Corollary: Dual of a matroid is a matroid { [n]-B | B basis} • <u>corollang</u>: Bases restricted to jace of polytope also form basis of some matroid.

(guo, Cryan, Moura '20): Mixing time - O(rank log rank)

< O(rank'logn)

* Proof Skotch:

1. Links of simplicial complex are also manoids

2. Top links are O-local expanders

3. Profit based on trickle-down & local-to-global.

Crash Course on High Dimensional
Expanders

$$(V,E)$$

 $(d W i j hypergraph): H^{2}: on vertex set V = En]$
 $E \subseteq \begin{pmatrix} V \\ d \end{pmatrix}$

• $X_H(d) = H \in \begin{pmatrix} CNJ \\ d \end{pmatrix}$ • $X_H(i)$ consists $Te \begin{pmatrix} CNJ \\ i \end{pmatrix}$

s.t. TCT ja TEXCd).

· Technique called <u>local-to-global</u> paradigue

- When HDX Subisfies properly locally Satisfies (reaker version) of Krat properly Globally.

- Y <u>LINKS</u>: Let TEX(K), D≤K≤d.
- · Link of T: -> local view of sets of node of a graph.

· If all local links expand => HDX

himk of
$$2.13 \Rightarrow$$
 link is $3-1 = 2$ dimen :... $X_1(2)$.
 $X_1(2) = \xi 2.3.3$
 $X_1(4) = \xi 2.3.3$
Limk of $\xi 12 \} \Rightarrow$ limk is $3-2 = 1$ diments $X_{12}(1)$
 $X_{12}(1) = \xi 3.3$

<u>Q</u>: What is the link of a node of Graph? Let us see some examples of a link: Link of b.

... Link of b is =

hink of b: another rient

* Why did ne bother mith links so much?

* Informal Statement:

· If all local links expand => HDX

* What does it mean for a link to expand?

Link is a simplicial complex.
Just look at vertices × edges of Kris complex and see if they expand; i.e. X₂(1) U X₂(2).

→ Chreck if Kis expands or not.

$$(1 \ge \lambda_1 \ge \cdots \ge \lambda_m \ge -1)$$

1. Weighted Spectral Expandens:
$$G=(V, \overline{E})$$
 is
 λ -spectral expander if:
 $\lambda_2 \leq \lambda$

2. Y-local Spectral Expander:
A preighted simplicial cplx. is Y-local spec.expander
if underlying graph of every
$$i$$
-link for
 $0 \le i \le d-2$ is $Y - spectral expander$

* Oppenheims Trickling Down Theorem

IDEA: Infuitively " we have downward closedness top links should be enough to tell if its expanding.

* Thun: Let (X, TT) be a d-climn simplicial CPUX: 1. Every (d-2)-link is r-spectral expander. ⇒ 2. 7 i-links are connected for 0≤i≤d-2. Then, (X,TT) is a $\frac{\gamma}{1-Cd^{-2})\gamma}$ - local spectral expander. Owing to Trickling down theorem - it suffices to ensure:

- Top links are expanding. J=> cplx. 13
 Complex is connected.

The Picture:

- 1. We want to analyse mixing time of Donru. Up walk. i.e. λ_2 of this r.w. matrix s_{le}
 - ··· (FOLKLORE)

Mixing hime $\approx \frac{1}{1 - \lambda_2(r, \omega_2)} \log (\# ctates)$.

2. Fortunately in 2018, Kanffman & Oppenhoim proted spectral gap results jou Down-np walks in general. 3. ALON'19: Used KO'18. * <u>Twn</u> [Kaufman + Oppenhein 2018]:

Let (X, Π) be a pure d-dimn <u>O-local spectral</u> expander, and let $0 \le \kappa \le d$.

Then, second-largest eig. of some up walk
on a K- face is at most
$$\chi_2(P_K) \leq 1 - \frac{1}{K}$$
.

* Now we have all the books to analyze matroid sampling algorithm.

· RECALL PROOF SKETCH:

The Links of simplicial complex are also manoids. B Top links are 0-local expanders. C Profit based on trickle-down ~ local-to-global.

[B] Top links are 0-local expanders

 Now me need to prose that matroids that are top links are o-local spectral expanders.

→ Need Kis to use trickle down theorem • Then: Let (X, Π) be a d-dimn simplicial cplx: i. Every (d-2)-link is Y-spectral expander. a. \forall i-links are connected for $o \le i \le d-2$. Then, (X, Π) is a $\frac{Y}{1-(d-2)Y}$ - local spectral expander.

> + In matroid language, top-links are rank 2 matroids.

Good News: We know full characterization of reak 2 matroids. $\underline{T.P.}: \lambda_2 (Y.N. on Yank 2 matroid) \leq 0.$

The: Graph is a matroid of rank & B Complete multipoutite graph + isolated vertices.

The: Graph is a matroid of rank & B Complete multipoutite graph + isolated vertices.

=> Follows from exchange property: $\exists e \in T \mid S \leq t : Suee T$ eg: => Forbidden config. $a \quad T = c$ $T \mid S = \{a, c\}$ $3 \cdot consider aquivalence relationship <math>\gamma \sim \alpha$ $\gamma \sim \alpha : i \int \gamma \sim \gamma \gamma vot an edge$ Then $a \sim b$, $b \sim c \implies a \sim c$

°° Now we look at, $\lambda_2(adj of complete multipartie) <0$

But me need to show λ_{λ} for r.n. matrix, not adjacency matrix.

* <u>Lemma</u>: Let symm M≥O, TFAE:

- $\lambda_{2}(M) \leq D$
- 7 (n-1) dimu. cp. V S.t. 4x∈V : x^rMx ≤ 0.
- · Let VER', o let V= {x | x^TMV=0}

YXEV, X^TMX≤0

• $\forall \forall G | \mathbb{R}^{n}_{>0} : (X^{T}MX) (V^{T}MY) \in (X^{T}MY)^{2}$

=) Using this me can prove that If $\lambda_2(M) \leq 0$, $M \geq 0$, D diag with ≥ 0 then $\lambda_{L}(DMD) \leq O$ V/ $\lambda (\tilde{D}^2 M \tilde{D}^{1/2}) \leq 0$ and D'M similar D'2 M D'2 Lo r.no. mapix $\therefore \lambda_{L}(D'M) \leq 0$ K.

1. Links of simplicials cflx. are matroids. 2. Top links are O-local spectral expanders (by shoring rank 2 matroid connection)

=> Mixing time => Uni | sampling => counting