## Counking Bases of a Malroid. (Anari, Liu, Oveis Gharan, Vinzant) STOC 2019

Apoorv Vikram Singh


Sept 16, 2022

Markov Chains

- Sequence of $r \cdot v . X_{t} \equiv M \cdot C \cdot$ if

$$
\begin{align*}
& \mathbb{P}\left(x_{t+1}=y \mid x_{0}=x_{0}, \ldots, x_{t}=x_{t}\right)=\mathbb{P}\left(x_{t+1}=y \mid x_{t}=x_{t}\right) \\
& P(x, y)=\mathbb{P}\left(x_{t+1}=y \mid x_{t}=x\right) \tag{x}
\end{align*}
$$

$t$-Step distribution:

$$
P^{t}(x, y)= \begin{cases}P(x, y), & t=1 \\ \sum_{z \in \Omega} P(x, z) P^{t-1}(z, y), & t>1\end{cases}
$$

Stationary Distribution:

$$
\forall y \in \Omega, \quad \pi(y)=\sum_{x \in \Omega} \pi(x) P(x, y)
$$

Ergodic M.C. :

$$
\text { ft s.t. } \forall x, y \in \Omega, \quad p^{t}(x, y)>0
$$

* Theorem: For a finite, ergodic M.C. there exists a unique stationary dist. $\pi$ s.t.

$$
\forall x, y \in \Omega, \operatorname{lt}_{t \rightarrow \infty} P^{t}(x, y)=\pi(y) .
$$

* Rome: For ergodic MC when $P$ is symmetric

$$
\forall x, y \in \Omega \quad P(x, y)=P(y, x)
$$

then $\pi$ is uniform ores $\Omega$.

* Mixing Time:

$$
\tau_{\text {mix }}(\varepsilon):=\max _{x_{0} \in \Omega} \min \left\{t: d_{\pi v}\left(p^{t}\left(x_{0}, \cdot\right), \pi\right) \leq \varepsilon\right\}
$$

$\Rightarrow$ Time until chain "mixes" ie within TV dist $\leq \varepsilon$ from worst initial state.

- REMARKS:

1) Showed how one can get uniform stationary dist. orel $\Omega$
2) Idea: Run M.C. for time $\tau_{\text {mix }}$ and then sample from it. = almost uni sampling.

- Approximate counting * Almost uni j Sampling ore related.

Exact counter $\Rightarrow$ Exact sampler $\Downarrow$

$$
\Downarrow
$$

Approx Counter $\Leftrightarrow$ Approx. Sampler

* Counting Matchings in a graph $|\mu(G)|$

$$
G=(V, E) \quad e_{1}, \ldots, e_{m} \in E .
$$

Consider seq. of graphs

$$
\begin{aligned}
& G_{0}=G, \quad G_{1}=G_{0} \backslash e_{1}, \ldots, G_{i}=G_{i-1} \backslash e_{i}, \ldots \\
& G_{m}=G_{m-1} \backslash e_{m}=(v, \phi) \\
& \alpha\left|\mu\left(G_{m}\right)\right|=1 \text {. } \\
& \sim\left|\mu\left(G_{0}\right)\right|=|\mu(G)| . \\
& \frac{1}{|\mu(G)|}=\frac{\left|\mu\left(G_{1}\right)\right|}{\left|\mu\left(G_{0}\right)\right|} \cdot \frac{\left|\mu\left(G_{2}\right)\right|}{\left|\mu\left(G_{)}\right)\right|} \cdot \cdots \cdot \frac{\left|\mu\left(G_{m}\right)\right|}{\left|\mu\left(G_{m-1}\right)\right|} \\
& P_{i}=\frac{\left|\mu\left(G_{i}\right)\right|}{\left|\mu\left(G_{i-1}\right)\right|} \quad \therefore \quad|\mu(G)|=\prod_{i} \gamma_{p_{i}}
\end{aligned}
$$

- Boundingrini: 1 $\mu\left(G_{i}\right) \subseteq \mu\left(G_{i-1}\right)$

$» \quad \forall M \in \mu\left(G_{i-1}\right) \backslash \mu\left(G_{i}\right)$

$$
M \backslash\left\{e_{i-1}\right\}^{\Downarrow} \in \mu\left(G_{i}\right)
$$

$$
\therefore \quad 1 / 2 \leq p_{i} \leq 1
$$

$\therefore$ Aim: Find additive approx to $p_{i}$ to within error ( $1 \pm \varepsilon / 4 m$ ) multiplicatively $\quad$ op. $(1-\delta / m)$
$\because \quad \Rightarrow(1 \pm \varepsilon / 2 m)$ error to $/ p_{i}$
$\therefore$ Taking product we obtain

$$
(1+\varepsilon / 2 m)^{m}<1+\varepsilon \underset{\substack{\text { approx } \\ \text { wop. } 1-\delta . ~}}{ }|\mu(G)|
$$

$\because \frac{1}{2} \leq p_{i} \leq 1 \Rightarrow$ estimate $p_{i}$ to additive error $\pm \varepsilon / 8 m$
$\therefore$ Need to approx pi.

APPROXIMATING $p_{i}$
The fraction of matchings in $G_{i-1}$ that do NOT contain $\left\{e_{i}\right\}$ to error $\pm$ Em.

Idea: Use Approx sampler. $\pi=\operatorname{xinif}\left(\mu\left(G_{i-1}\right)\right)$

$$
A:=\left\{M \in G_{i-1}: e_{i} \notin M\right\}
$$

Use approx uni sampler: $\mu$ cot. $\|M-\pi\|_{N v} \leqslant$ som

$$
\begin{aligned}
& \left|\mathbb{P}_{M \sim \mu}[M \in A]-\mathbb{P}_{m \sim \pi}^{\mathbb{P}}[M \in A]\right| \leq \frac{\varepsilon}{20 m} \\
\Rightarrow & p_{i}-\frac{\varepsilon}{20 m} \leq{\underset{p i v}{p}}_{\mathbb{P}}^{20 m}[M \in A] \leq p_{i}+\frac{\varepsilon}{20 m}
\end{aligned}
$$

$\therefore$ By chernoff, it is enough to generate

$O\left(\left(\frac{m}{\varepsilon^{2}}\right) \log \left(\frac{m}{\varepsilon}\right)\right)$ matchings from $M$ and compute fractions tat are in A.

Total complexity (samples):

$$
\text { pay } \log \left(\frac{c m^{2}}{\varepsilon^{2}}\right)
$$

STATUS:
Approx Unit Sampling $\Downarrow$

Approx Counting
Better than birthday paradox argument


* Counting Bases of a Matroid
* Matroid

II Examples:

- $G=(V, E)$
$I=\{S \subseteq E \mid S$ contains no cycles $\}$
Maximum size $S$ are called Spanning Trees.
- Lineal matroid

III Definition: MATROID

- $[n]=\{1, \ldots, n\} \rightarrow$ ground set

$$
I \subseteq 2^{[n]} \text { st. }
$$

Prop 1: I is downward closed/simplicial sci.

$$
S \in I, T \subseteq S \Rightarrow T \in I
$$

Prop 2: (Exchange)

$\left.\begin{array}{l}S, T \in I \\ |T|>|S|\end{array}\right\} \Rightarrow \exists e \in T \mid S$ sit. $S+e \in I$.

- Def (Basis): Maximal $S \in I \quad$ Y exchange prop.

Raul $=$ comines size of bases.

- Prop\%: Bases uniquely determine a matroid. \}, Downward
Close
- Pichure: $[n]=\{a, b, c, d, e\}$
$B=\{a b c, a b d, a b c, a c d, a c e\}$

- Geometric Definition of a Matroid

AIM: Given: (election of sets $F$ from ground set $\mathrm{C}_{n}$ ].
Defumine: If they form basis of come matroid
Appeactr:Consider the set of indicator rectors of Basis.

$$
\left\{\mathbb{I}_{B}: B \in F\right\} \quad \mathbb{1}_{B}=(\underbrace{0,0,1,0,1, \ldots \ldots, 0,1,0}_{\text {itans in basis }})
$$

tans in basis
Consider the Matroid polyfope

$$
\operatorname{conv-\operatorname {hul}}\left(\left\{\mathbb{1}_{B}: B \in F\right\}\right)
$$

PICTURE:


* Theorem:
$F$ is a collection of bases of some matroid


All edges (1-dimen faces) are parallel to

$e_{i}-e_{j}, \quad i, j \in[n]$

Proof: $A \subset B$ neighbours 7 linear farci). W maximized on edge b/w $A \times B$

- Exchange then says: $a \in A, b \in B$ sit. $(A \backslash a) \cup b \quad \propto(B \backslash b) \cup A$ are Bases
- himeacity: $w(A)+r o(B)=w(A \mid a \cup b)+w(B \mid b \cup a)$ $\Rightarrow$ Ala Ob $=B \quad \because W$ only max. on that edge.
* Corollany: Dual of a matroid is a matroid

$$
\{[n]-B \mid B \text { basis }\}
$$

If: Transform $O$ 's to I's in polytope $\Rightarrow$ Linear transfori. $\therefore$ Edeges of polytope dent change wider limn tangy.

- Corollary: Bases restricted 20 face an polytope also form basis of some matroid.

Recall GOAL: Sample bases of matriod randomly (on) approximately count the number of basis

* Theorem: Down-up malk on bases of matroid has spectral gap $\geqslant \frac{1}{(\text { rauk) }}$

$$
1-\lambda_{2}(r \cdot \omega \cdot)
$$

Down-up Walk: (Not typrical riw. on palytope)

(Guo, Cryan, Mouca'20): Mixing tive $\equiv O$ (racke log rank)

* Proof Sketch :

1. Lints of simplicial complex are also matroids
2. Top links are 0 -local expenders
3. Profit based on trickle-donn * local-to-global.

Crash Course on High Dimensional Expander

- Def (d-unij hypergraper): $H^{\prime \prime}$ : $V, E$ vertex set $V=[n]$

$$
E \subseteq\binom{V_{d}}{d}
$$

- Def (Simplicial splx. associated with H)

$$
\begin{gathered}
X_{H}=X_{H}(0) \cup \cdots \cup X_{H}(d) \rightarrow \begin{array}{c}
\text { Girivan by donn ward } \\
\text { closure of } H
\end{array} \\
\text { - } X_{H}(d)=H \leq\binom{[n]}{d} \cdot X_{H}(i) \text { consists } \tau \in\binom{[n]}{i} \\
\text { s.t. } \tau \subset T \text { far } T \in X(d) .
\end{gathered}
$$

Q: When is pure simplicial epee atligh Bimn. Expander? (HDD)

- Technique called local-to-global paradigm
- When HDX satisfies property locally

Satisfies (reaper version) of the at property globally.

* LINKS: Let $\tau \in X(k), \quad 0 \leq k \leq d$.

Link of $\tau: \rightarrow$ local view of sets of node of a graph. If all local links expand $\Rightarrow H \Delta x$

Def (Links): $\quad \tau \in X(k)$
Link of $\tau \equiv X_{\tau}:=\{\sigma: \sigma \cup \tau \in X, \sigma \cap \tau=\phi\}$
. $\Rightarrow$ set of stuff $(\sigma)$ you add in $\tau$ s.t. it is in $X$ but disjoint from $\tau$.

- $X_{\tau}$ is $(d-k)$-dime simplicial complex

Picture:
eg: 3 dimen rlypergraph


$$
x=x(3) \cup x(2) \cup x(1)
$$

Wem: 2 Am
AR : 3 dhon
blue : 1 dimn $x(1)$

$$
\begin{aligned}
& x(3):\{123,234\} \\
& x(2):\{12,23,13,23,34,24\} \\
& x(1):\{1,2,3,4\} \\
&
\end{aligned}
$$

hink of $\{1\} \Rightarrow$ link is $3-1=2 \operatorname{dim} n \therefore x_{1}(2)$.

$$
\begin{aligned}
& x_{1}(2)=\{23\} \\
& x_{1}(1)=\{2,3\}
\end{aligned}
$$

Link of $\{12\} \Rightarrow$ link is $3-2=1$ dimm $\therefore x_{12}(1)$

$$
x_{12}(1)=\{3\}
$$

Q. What is the link of a node of graph? Let us see some examples of a link: Link of $b$.

$\therefore$ Link of $b$ is $\equiv$


Link of $b$ : another rient



- Link Example: Link of ae


$$
X_{a e} \equiv
$$



* Why did me bother with lines so much?
- Informal Statement:

If all local links expand $\Rightarrow 110 X$

* What does if mean foe a line to expand?
- Link is a simplicial complex.
- Just look at reifices a edges of his complex and see if they expand ie. $X_{\tau}(1) \cup x_{\tau}(2)$.

Recall $x_{b} \equiv$


$$
\Rightarrow \text { Comesponding Graph: }
$$


$\rightarrow$ chece if ruis expands or not.

* Definitions:

$$
\left(1 \geqslant \lambda_{1} \geqslant \cdots \geqslant \lambda_{n} \geqslant-1\right)
$$

1. Weighted Spectral Expenders: $G=(V, E)$ is
$\lambda$-spectral expander if:

$$
\lambda_{2} \leqslant \lambda
$$

2. $r$-local Spectral Expander:

A weighted simplicial cplx. is $r$ local spec. expo. if underlying graph of every $i$-link jor $0 \leq i \leq d-2$ is $\gamma$-spectral expander.

* Oppenheim's Trickling Down Theorem

IDEA: Intuitively $\because$ we hare coward closedness top links should be enough to tell if its expanding.

* Them: Let $(x, \pi)$ be a d-climen simplicial cole:

1. Every $(d-2)$-link is $r$-spectral expander.
$\Theta$ 2. $\forall i$-links are connected for $0 \leq i \leq d-2$.
Then, $(x, \pi)$ is a

$$
\frac{\gamma}{1-(d-2) \gamma} \text { - local spectral expander. }
$$

$\therefore$ Owing to Trickling down theorem- it suffices to ensure:

- Top links are expanding. $\Rightarrow \Rightarrow$ cplex. is
- Complex is connected. expanding.

The Picture:

1. We wont to analyse mixing time of Down. Up walk.
ie. $\lambda_{2}$ of this $r, m$.matrix

$\because$ (FOLKLORE)

$$
\text { Mixing time } \approx \frac{1}{1-\lambda_{2}(\times \cdot \omega)} \log (\# \text { states }) .
$$

2. Fortunately in 2018, Kaufman" Oppenheim proved spectral gap result's jor

Down-xp walks in general.
3. ALOV'19 : Used KO'18.

* Inn [Kauffuan + Oppenhein 2018]:

Let $(x, \pi)$ be a pure $d$-dimn 0 -local spectral expender. and let $0 \leq k<d$.

Then, second-largest eig. of sown-up walk on a $k$-face is at most

$$
\lambda_{2}\left(P_{k}^{V}\right) \leq 1-\frac{1}{k} .
$$

* Now me have all the toots to analyze matroid sampling algoritur.
- RECALL PROOF SKETCH:

AI Links of simplicial complex are also maroids
(B) Top links are 0 -local expanders.
(E) Profit based on brickle-donn * local-to-global.
(A) hinks of simplicial eple are also matroids:

- Link $x_{\tau}$ of $\tau \in X(k)$ is $(d-k)$-dimu. simplicial $c p l x$.
- In matroid language:
hilk corresponds to marroid restricted to a Jace, which is also a matroid.


This is a matroid. link is $X_{a}^{\prime}$ : finst coordinate.
(B) Top links are 0 -local expanders

- Now me need to prove that matroids that are top links are 0 -local spectral expander.
$\rightarrow$ Need his to use tickle down theorem
- Then: Let $(x, \pi)$ be a d-dimen simplicial sfax.

$$
\begin{aligned}
& (d-2)\left(d^{-2}\right)=2 \\
& d-2
\end{aligned}
$$

1. Every ( $d-22)$ - $\operatorname{linh} k$ is $r$-spectral expander.
2. $\forall i$-links are connection for $0 \leqslant i \leq d-2$. Then, $(x, \pi)$ is a
$\frac{r}{1-(d-2) \gamma}$-local spectral expander.
$\rightarrow$ In matroid language, top-links are rank 2 matroids.

Good News: We know full characterization of rank 2 matroids.
T.P.: $\quad \lambda_{2}(r . x$. on raul 2 matroid $) \leq 0$.

* Characterization:

edge signifies that $\{3, n\}$ is a basis

Thu: Graph is a matroid of rank 2 complete multipartite graph t isolated vertices.

Thu: Graph is a matroid of rank 2 complete muilipoutite graph $t$ isolated Rertices.

$\Rightarrow$ Follons from exchange propery: $\exists e \in T S$ s.t. SueeI eg.
 $\Rightarrow$ Forriiden config.

$$
T \mid S=\{a, c\}
$$

$\Rightarrow \therefore$ Consider equivalence relationship $v \sim u$ $v \sim u$ : if $\{u, v\}$ not an edge.

Then $a \sim b, b \sim c \Rightarrow a \sim c$
$\therefore$ Now we look at, $\lambda_{2}$ (adj of complete muctipartie) $\leqslant 0$

$$
\begin{aligned}
& \therefore \quad \lambda_{2}(A) \leq 0
\end{aligned}
$$

But me need to show $\lambda_{2}$ for rim. matrix, not adjacency matrix.

* Lemma: Let syman $M \geqslant 0$, TFAE:
- $\lambda_{2}(M) \leqslant 0$
- $\exists(n-1)$ dimu. sp. V set. $\forall x \in V: x^{\top} M x \leq 0$.
- Let $v \in \mathbb{R}^{n}>0$ let $V=\left\{x \mid x^{\top} M v=0\right\}$

$$
\therefore \forall x \in V, \quad x^{\top} M x \leq 0
$$

- $\forall v \in \mathbb{R}_{>0}^{n}:\left(x^{\top} M x\right)\left(v^{\top} M v\right) \leq\left(x^{\top} M v\right)^{2}$
$\Rightarrow$ Using this me can prove rat
If $\lambda_{2}(M) \leq 0, M \geqslant 0, D$ diag with $\geq 0$
then $\lambda_{2}(D M D) \leqslant 0$
$\Downarrow$

$$
\lambda_{2}\left(D^{-1 / 2} M D^{-1 / 2}\right) \leq 0
$$

and

$$
\underbrace{D^{-1} M}_{C \text { ron matrix }} \stackrel{D^{\text {similar }}}{=}
$$

$$
\therefore \lambda_{2}\left(D^{-1} M\right) \leqslant 0
$$

* Putting things together

1. Links of simplicial cpl are matroids.
2. Top links are 0 -local spectral expanders
(by showing rank 2 matroid connection)
3. Erenghing is connected in our example.
4. Use Trickle-down Rum. of oppenteim to imply simplicial epis. are 0 -local spectral exp.
5. Use Kaujgman \& Oppenhein to give bound on $\lambda_{2}$ (down up walk).
$\Rightarrow$ Mixing time $\Rightarrow$ Uni| Sampling $\Rightarrow$ counting
