
Approximation Algorithms for Cost-Balanced Clustering

Amit Deshpande
Microsoft Research

amitdesh@microsoft.com

Anand Louis
IISc

anandl@iisc.ac.in

Deval Patel
IISc

devalpatel@iisc.ac.in

Apoorv Vikram Singh
IISc

apoorvsingh@iisc.ac.in

Abstract

Clustering points in the Euclidean space is a fundamental problem in the theory of algorithms and in unsupervised
learning. Various clustering objectives to quantify the quality of clustering have been proposed and studied; the
k-means and k-median clustering objective are the most popular ones. In some cases, the k-means or the k-median
objective may result in a few clusters of very large cost and many clusters of extremely small cost. Even when the
optimal clusters are balanced in size, some of them may have a huge variance. This is undesirable for quantization
or when we have a budget constraint on the cost of each cluster. Motivated by this, we study the cost-balanced
k-means and the cost-balanced k-median problem. For a k-clustering O1, . . . ,Ok of a given set of n points X ⊂ �d, we
define its cost-balanced k-means cost as

K (O1, . . . ,Ok) def
= max

l∈[k]

∑
x∈Ol

‖x − µl‖
2 where µl =

1
|Ol|

∑
x∈Ol

x .

In other words, we want to minimize the cost of the heaviest cluster or balance the cost of each cluster. For any ε > 0,
we give a randomized algorithm with running time O

(
2poly(k/ε)nd

)
that gives a (1 + ε)-approximation to the optimal

cost-balanced k-means and the similarly defined optimal cost-balanced k-median clustering, using k clusters, with a
constant probability. We define a more general version of the k-median clustering and the cost-balanced k-median
clustering, and we name them `p cost k-clustering and `p cost-balanced k-clustering, respectively. Given a black-box
algorithm which gives a constant factor approximation to the `p cost k-clustering, we show a procedure that runs in
time poly(n, k, p) which gives a bi-criteria O

(
1/ε1/p

)
-approximation to the optimal `p cost-balanced k-clustering, using

(1 + ε)k clusters.

mailto:amitdesh@microsoft.com
mailto:anandl@iisc.ac.in
mailto:devalpatel@iisc.ac.in
mailto:apoorvsingh@iisc.ac.in

1 Introduction
Clustering points in the Euclidean space is a fundamental problem in the theory of algorithms and in unsupervised
learning. Given a set of points, the goal is to group “similar” points together. Typically, a number k is also provided as
an input, and the problem asks to find k clusters in the set of points.

To quantify the quality of clustering, various clustering objectives have been studied, such as k-means, k-median,
k-center, etc. Out of these, k-means and k-median are one of the most popular clustering objectives. Given a set of
points X in �d, and a clustering {O1, . . . ,Ok} of X, the k-means cost of the clustering is defined as

k-means (O1, . . . ,Ok) def
=

k∑
l=1

∑
x∈Ol

‖x − µl‖
2 where µl

def
=

1
|Ol|

∑
x∈Ol

x , (1)

and the k-median cost of the clustering is defined as

k-median (O1, . . . ,Ok) def
=

k∑
l=1

∑
x∈Ol

‖x − cl‖ where cl
def
= argminc∈�d

∑
x∈Ol

‖x − cl‖ . (2)

Computing a clustering having the least k-means cost and the least k-median cost is an NP-hard problem. There have
been many works studying approximation algorithms for this problem, see Section 1.2 for a brief survey.

Another popular clustering objective is the k-center clustering objective. For a set of points X in �d, the k-center
problem asks to compute a set C of k points in �d, which minimize maxx∈X minc∈C ‖x − c‖. This problem can be
equivalently stated as a clustering problem as follows: compute a k-clustering O1, . . . ,Ok of X and “cluster centers”
c1, . . . , ck ∈ �

d so as to minimize
max
l∈[k]

max
x∈Ol
‖x − cl‖ .

In some cases, the k-means and the k-median objective may result in a few clusters of very large cost and many
clusters of extremely small cost. Even when the optimal clusters are balanced in size, some of them may have huge
variance. This is undesirable for quantization, or when we have a budget constraint on the cost of each cluster. The k-
center clustering objective may result in a some clusters being unbalanced (i.e. sizes of some clusters being significantly
larger than the sizes of other clusters). Moreover, the k-center cost of a clustering, which can be viewed as a proxy for
the coverage cost of a cluster, is very sensitive to outliers. Motivated by this, we study the cost-balanced k-means and
the cost-balanced k-median clustering objective which is defined as follows.

Definition 1.1. Given a set X of n points in �n, and a clustering O1, . . . ,Ok of X, the cost-balanced k-means cost of the
clustering is defined as

K (O1, . . . ,Ok) def
= max

l∈[k]

∑
x∈Ol

‖x − µl‖
2 where µl

def
=

1
|Ol|

∑
x∈Ol

x ,

and

Definition 1.2. Given a set X of n points in �n, and a clustering O1, . . . ,Ok of X, the cost-balanced k-median cost of
the clustering is defined as

Kmed (O1, . . . ,Ok) def
= max

l∈[k]

∑
x∈Ol

‖x − cl‖ where cl
def
= argminc∈�d

∑
x∈Ol

‖x − cl‖ .

The k-means cost of a clustering O1, . . . ,Ok can be viewed as the sum of 1-means cost of each cluster, whereas the
cost-balanced k-means cost is defined as the largest 1-means cost among the k clusters. For a cluster, the sum of the
squared distances of the points in the cluster to its center can be viewed as a proxy for the coverage cost of a cluster.
This is more resilient to outliers, particularly in the case of balanced clusters. Minimizing the largest coverage cost
among the k clusters gives the cost-balanced k-means problem. Therefore, the cost-balanced k-means clustering can be
viewed as having the desirable properties of k-means and k-center. The similar motivation holds for the cost-balanced
k-median objective.

1

We define a more general notion of k-means and cost-balanced k-means which generalizes to other well-known
clustering objectives. Given a metric space (X, dist), where X represents the set of points and dist(u, v) is the distance
between u, v ∈ X.

Definition 1.3 (`p cost k-clustering cost). For a k clustering O1, ...,Ok with corresponding centers c1, ..., ck, we define
its `p cost k-clustering cost ∆p((O1, ...,Ok), (c1, ..., ck)) as

∑k
i=1

∑
u∈Oi

dist(u, ci)p.
The optimal `p cost k-clustering cost is defined as

min
((O1,...,Ok),(c1,...,ck))

 k∑
i=1

∑
u∈Oi

dist(u, ci)p


1
p

.

Definition 1.4 (`p cost-balanced k-clustering cost). For a k clustering O1, ...,Ok with corresponding centers c1, ..., ck,
we define its `p cost-balanced k-clustering cost Kp((O1, ...,Ok), (c1, ..., ck)) as maxi∈[k]

∑
u∈Oi

dist(u, ci)p.
The optimal `p cost-balanced k-clustering cost is defined as

min
((O1,...,Ok),(c1,...,ck))

max
i∈[k]

∑
u∈Oi

dist(u, ci)p


1
p

.

Remark 1.5. For p = 1, `p cost-balanced k-clustering cost corresponds to cost-balanced k-median cost. For p = 2, `p

cost-balanced k-clustering corresponds to cost-balanced k-means clustering and the `p cost-balanced k-clustering cost
corresponds to (cost-balanced k-means cost)

1
2 .

We study the problem of computing the k-clustering which has the least `p cost-balanced k-clustering cost. A
cost-balanced-type objective is useful in facility-location, when each facility incurs the cost of serving its clients, and
we would like to minimize the maximum service cost over all open facilities. In such applications, the optimal solution
need not assign clients to their nearest facilities. cost-balanced versions of other clustering objectives have been studied
before, see Section 1.2 for a brief survey.

1.1 Our Results
We give a (1 + ε) approximation algorithm (Algorithm 1) for cost-balanced k-means problem, running in time
O

(
2poly(k/ε)nd

)
.

Theorem 1.6. There exists a randomized polynomial time algorithm which, given a set X of n points in �d, an integer
k ∈ �, and an error parameter ε > 0, runs in time O

(
2poly(k/ε)nd

)
and outputs, with constant probability, a k-partition

O1, . . . ,Ok of X which satisfies K (O1, . . . ,Ok) 6 (1 + ε) OPT, where OPT is the minimum value of K (O1, . . . ,Ok)
over all k-partitions O1, . . . ,Ok of X.

We also give a (1 + ε) approximation algorithm (Algorithm 4) for cost-balanced k-median problem, running in time
O

(
2poly(k/ε)nd

)
.

Theorem 1.7. There exists a randomized polynomial time algorithm which, given a set X of n points in �d, an
integer k ∈ �, and an error parameter ε > 0, runs in time O

(
2poly(k/ε)nd

)
and outputs, with constant probability,

a k-partition O1, . . . ,Ok of X which satisfies Kmed (O1, . . . ,Ok) 6 (1 + ε) OPT, where OPT is the minimum value of
Kmed (O1, . . . ,Ok) over all k-partitions O1, . . . ,Ok of X.

We also give a polynomial time bi-criteria approximation algorithm (Algorithm 3) for the `p cost-balanced k-
clustering cost minimization problem.

Theorem 1.8. Given a set of n points in a metric space (X, dist), an integer k ∈ �, a number p ∈ �+, and a polynomial
running time algorithm G which outputs the clustering � = {O1, ...,Ok} with centers � = {c1, ..., ck} such that it ∆p(�,�)
is at most α times the optimal `p cost k-clustering cost, there exists a polynomial time algorithm that runs in time
O

(
n(log k+p logα)

log(1+ξ)

)
, where ξ > 0 is an error parameter, and outputs a (1 + ε)k-partition, for ε > 0, OA1 , . . . ,O

A
(1+ε)k with

corresponding centers cA1 , ..., c
A
(1+ε)k of X which satisfies maxl∈[(1+ε)k]

∑
x∈OAl

dist
(
x, cAl

)p
6

(
2α(1+ξ)

ε

)
·OPT, where OPT

is the optimal `p cost-balanced k-clustering cost.

2

Remark 1.9. The centers in the Theorem 1.8 need not belong to X. The theorem holds for both discrete `p cost-balanced
k-clustering, where centers belong to X, and Euclidean `p cost-balanced k-clustering, where centers belong to �d.

As a consequence of the above theorem, we get the following corollaries.

Corollary 1.10. For parameters ξ > 0, ε > 0, there exists an algorithm that runs in time poly
(
n, p, k, 1

log(1+ξ)

)
, which

gives a
(
O

(
C(1+ξ)1/p

ε1/p

)
, (1 + ε)

)
-bi-criteria approximation to the discrete version of the `p cost-balanced k-clustering

clustering, for p > 1, C > 0, by using the O (C)-factor approximation algorithm of [CS19] for the `p cost k-clustering
problem, for some constant C > 1.

Corollary 1.11. For parameteres ξ > 0, ε > 0, there exists an algorithm that runs in time poly
(
n, k, 1

log(1+ξ)

)
, which

gives a
((

12.75 (1+ξ)
ε

)
, (1 + ε)

)
-bi-criteria approximation to the discrete version of the cost-balanced k-means clustering

by using the 6.375-factor approximation algorithm of [ANFSW17] for the discrete k-means problem.

Corollary 1.12. For parameteres ξ > 0, ε > 0, there exists an algorithm that runs in time poly
(
n, k, 1

log(1+ξ)

)
, which

gives a
((

5.35 (1+ξ)
ε

)
, (1 + ε)

)
-bi-criteria approximation to the discrete version of the cost-balanced k-median clustering

by using the 2.675-factor approximation algorithm of [BPR+17] for the discrete k-median problem.

Complementing these results, we prove that even if we are provided a set of k centers, the problem of computing the
optimal clustering for these centers is NP-hard.

Proposition 1.13. Given a set of n points X ⊂ �d, an integer k ∈ �, and k points c1, . . . , ck ∈ �
d, it is NP-hard to

compute a k-partition O1, . . . ,Ok which minimizes maxl∈[k]
∑

x∈Ol
‖x − cl‖

2.

Organization We given an overview of the proofs of our results in Section 1.3. We prove Theorem 1.6 in
Section 2, Theorem 1.7 in Section C, and Theorem 1.8 in Section 3. We prove Proposition 1.13 and Section 4.

1.2 Related Work
Approx Algorithms for k-means and k-median Kanungo et al. [KMN+04] proposed a (9 + ε)-approximation

algorithm with running time O
(
n3ε−d

)
for the discrete version of the k-means problem. Arthur and Vassilvitskii [AV07]

showed an approximation ratio of O
(
log k

)
, with running time O (ndk), much superior to [KMN+04], for the Euclidean

k-means Recently Ahmadian et al. [ANFSW17] improved the approximation ratio given by [KMN+04] to (6.357 + ε)
for the discrete k-means problem. There have been works to get a PTAS for Euclidean k-means objective. In order
to obtain the PTAS, many have focused on cases where k or d or both are assumed to be fixed. Inaba et al. [IKI94]
gave a PTAS when both k and d is fixed. There have been a series of work in the case when only k is assumed to be
fixed [VKKR03, HPM04, HPK05, FMS07, KSS04, Che09]. Recently there has been works which give a PTAS for
Euclidean k-means where only d is assumed to be a constant [CAKM16, FRS16]. Charikar et al. [CGTS02] gave the
first constant factor approximation ratio of 6 2

3 to the discrete k-median problem. Then, Jain and Vazirani [JV01] gave a
6-approximation algorithm for the same. Li and Svensson [LS13] showed a (1 +

√
3 + ε)-approximation algorithm for

the discrete k-median. The best known approximation for the discrete k-median problem is 2.675-factor approximation
algorithm by Bryka et al. [BPR+17] .

`p Cost k-Clustering For p = 1 the problem is known as the k-median clustering. For p = 2 the clustering
corresponds to the k-means clustering and the clustering cost corresponds to

√
k-means cost, which are well-studied

problems. For general p > 1 the problem is also known as the `p-norm minimization in the k-clustering setting.
Chakrabarty and Swamy [CS19] show a O (C)-factor approximation algorithm for the discrete `p-norm minimization in
the k-clustering setting problem, for some positive constant C.

3

Sampling Based Methods Our results use sampling techniques often used in (1 + ε)- approximation for k-means
[KSS04, Che09, ABS10]. The first ever linear (in n and d) running time for obtaining PTAS (assuming k to be a
constant) given by [KSS04] is O

(
nd2poly(k/ε)

)
. Feldman et al. [FMS07] gave a new algorithm (using efficient coreset

construction) with a better running time than that of [KSS04] from O
(
nd2poly(k/ε)

)
to O

(
nkd + d.poly(k/ε) + 2Õ(k/ε)

)
.

There have been other works which also show similar results using D2 sampling method [JKS14, BJK18]. Ding
and Xu [DX15] gave a sampling based procedure to cluster other variants of k-means objective, which they called
the constrained k-means clustering. These clustering objectives need not satisfy the locality property in Euclidean
space. Their algorithm is based on uniform sampling and some stand alone geometric technique which they call the
‘simplex lemma’. The running time of their algorithm is O

(
2poly(k/ε)n(log n)k+1d

)
. Deshpande et al. [DLS19] use

these techniques to exactly solve the k-means clustering for balanced clusters of α-center proximal instances in time
O

(
2poly(k/ε)nd

)
. If the pairwise distance between the means is within a factor of gamma of each other, then they show

an exact algorithm for minimizing the k-means objective over clustering that satisfy α-center proximity and the running
time of their algorithm depends exponentially on the factor γ, number of clusters k, and linear in n and d. They also
show an exact algorithm for minimizing the k-means objective over clustering that satisfy α-center and form balanced
clusters. The running time depends exponentially on the balance parameter 1/ω, number of clusters k, and linear in n
and d where the size of each cluster is at least ωn/k. Bhattacharya et al. [BJK18] gave a more efficient algorithm based
on D2 sampling for the same class of constrained k-means problem studied by [DX15] and gave an algorithm with
running time O

(
2Õ(k/ε)nd

)
. All the work related to sampling based methods above estimate the means/centers of the

clusters, and use them to recover a clustering. Bhattacharya et al. [BJK18] also show an extension of the constrained
k-means techniques to the constrained k-median setting.

Cost-Balanced Problems The discrete versions of cost-balanced clustering problems in abstract metric space
has been studied. It is studied under different names, like Minimum load k-facility location (MLkFL), and min-max
star cover. MLkFL is defined as follows: given a set of facilities and clients and an integer k > 0, the goal is to open a
subset of k facilities and assign clients to the facilities, such that the load of the heaviest facility is minimized, where
the load of a facility is sum of distances of clients, from the facility, assigned to it. Evan et al. [EGK+03] and Arkin
et al. [AHL06] studied the cost-balanced clustering problem under the name of min-max star cover. They view the
problem as one where we try to cover the the nodes of a graph by stars. The goal is to come up with k stars such that
the cost of the heaviest star is minimized, where the cost of a star is measured as the sum of distances of nodes of the
star from its root. Evan et al. [EGK+03] gave a (4, 4) bi-criteria approximation for the problem. This was improved by
Arkin et al. [AHL06] who gave a (3 + ε, 3 + ε) bi-criteria approximation for the same. Evan et al. [EGK+03] and Arkin
et al. [AHL06], consider other problems where they try to cover the graph with different objects like trees, paths, etc.
Ahmadian et al. [ABF+18] look at the same problem under the name of minimum-load k-facility location (MLkFL), and
gave a PTAS on line metrics. They also give a 12 factor approximation algorithm for MLkFL on star metrics. On the
hardness side they show that MLkFL is strongly NP-Hard on line metrics; they also show that even a configuration-style
LP-relaxation has a bad integrality gap, and a multi-swap k-median style local-search heuristic has a bad locality gap.

Makespan Scheduling Minimum makespan scheduling on related machines is a well studied problem. There
is a factor 2 approximation factor known for it [L.96] and a PTAS by [HS87]. The problem is known to be strongly
NP-Hard [GJ90]. Minimum makespan scheduling on unrelated parallel machines NP hard to approximate to a factor
better than 3/2 − ε [LST90]. Lenstra et al. [LST90] gave a factor 2 approximation algorithm for the problem, which
is currently best know approximation achieved in polynomial time. Horowitz and Sahani [HS76] gave a polynomial
time algorithm where the number of machines k is a fixed constant that computes a (1 + ε) approximation in time
O

(
nk(nk/ε)k−1

)
for any ε > 0, where n is the number of jobs. Fishkin et al. [FJM08] improved the running time of

[HS76] (there were works in between also like [JP01]) by giving a (1 + ε) approximation scheme whose running time
is O (n) + (log m/ε)O(m2). Jansen and Mastrolilli [JM10] gave a (1 + ε) approximation scheme whose running time is
O (n) + 2O(m log(m/ε)).

4

1.3 Proof Overview
One way to go about clustering a set of points is to first estimate the k cluster centers, and then “assign” the points to
these centers. This approach has been studied in the context of k-means clustering [Che09, FMS07, HPK05, HPM04,
KSS04, VKKR03], and other objective functions. It is a well known that for the k-means objective function, if the
optimal cluster centers are known, then assigning each point to the nearest center (breaking ties arbitrarily) will
recover the optimal cost clustering. However, for the cost-balanced k-means objective, an analogous statement is not
true. In fact, given a set of centers c1, . . . , ck, assigning the points optimally to these centers is an NP-hard problem
(Proposition 1.13). We show that, given a set of centers c1, . . . , ck, we can use an approximation algorithm for scheduling
jobs on unrelated machines (due to [JM10]), to compute a (1 + ε)-approximation to the optimal assignment of points
to c1, . . . , ck (Theorem 2.5). Next, we show that to obtain our result (Theorem 1.6), it suffices to estimate the cluster
centers to a sufficiently high accuracy. We use the algorithm of [BJK18] to estimate the cluster centers in our setting;
their analysis of their algorithm, with appropriate modifications wherever needed, works for our setting. The analysis
of Theorem 1.7 follows in a similar fashion by using a lemma of [KSS10] (Lemma C.1) which gives a procedure to
approximately find the 1-median center of a cluster, given random samples from that cluster.

To prove Theorem 1.8, we use the idea that the optimal `p cost k-clustering cost is upper bounded by k times the
optimal `p cost-balanced k-clustering cost. This also implies that an α-approximation to the optimal `p cost k-clustering
cost is upper bounded by α · k times the optimal `p cost-balanced k-clustering cost. In the theorem we assume access to
a black-box algorithm, which gives a clustering with their corresponding centers, that give an α-approximation to the
optimal `p cost k-clustering cost. Suppose, we also knew the OPT, which is the cost of the optimal `p cost-balanced
k-clustering clustering. Then, using the given `p cost k-clustering clustering by a black-box α-approximation algorithm,
we do a bin-packing type analysis, where we greedily assign points to the given centers till we exceed theO

(
αOPT/ε1/p

)
cost of the clustering with the center. We then proceed to make a copy of the centers for which we exceeded the
O

(
αOPT/ε1/p

)
cost and repeat the above procedure, till all the clusters are of cost at most O

(
αOPT/ε1/p

)
. We show

that we would need to open a maximum of (1 + ε)k clusters. This implies a
(
O

(
α/ε1/p

)
, (1 + ε)

)
factor bi-criteria

approximation to the optimal `p cost-balanced k-clustering cost.
We also mention in Appendix A that, for the discrete version of the cost-balanced k-means the natural facility-

location type linear programming approach cannot be used to give a constant factor approximation algorithm. To this
end, we mention the integrality gap instance given by [Cha18], which gives us an integrality gap of (k + 1).

Notations: The mean of a set of finite set of points X ⊂ �d is denoted by µ(X). Let ∆(X) denote the 1-means cost
of these set of points, i.e., ∆(X) def

=
∑

x∈X ‖x − µ(X)‖2. A k-partition of X into disjoint subsets � = {O1, . . . ,Ok} is called
a k-clustering of X. We denote the optimal cost-balanced k-means clustering by �∗ =

{
O∗1, . . . ,O

∗
k

}
. Given a clustering �

and a set C = {c1, . . . , ck}, we define costC(�) as the minimum over all permutation π of C of maxi∈[k]
∑

x∈Oi

∥∥∥x − cπ(i)
∥∥∥2

.
Recall that OPT denotes the optimal value of the cost-balanced k-means (K (�∗)). For a set of points X and another set
of points C, we define φC(X) =

∑
x∈X minc∈C ‖x − c‖2. With a slight abuse of notation, when set C has only one element

c, we will use the notation φc(X), instead of φ{c}(X).

2 (1 + ε)-Approximation for Cost-Balanced k-Means Clustering
We define the notion of D2-sampling, which will be used by the Algorithm 2

Definition 2.1 (D2-sampling). Given a set of points X ⊂ �d and another set of points C ⊂ �d, D2-sampling from X
w.r.t. C samples a point x ∈ X with probability φC ({x})

φC (X) . When C = ∅, we pick a point uniformly at random from X.

In the following theorem, we prove that Algorithm 2 gives us a set of k points (centers) such that, with constant
probability, the cost of the optimal clustering with respect to these centers is at most (1 + ε) times the optimal cost of
cost-balanced k-means .

Theorem 2.2. Algorithm 1 takes input a set of points X = {x1, . . . , xn} ⊂ �
d, parameters k, ε, and constructs a list L of

2Õ(k/ε) sets of centers of size k such that for an optimal cost-balanced k-means clustering �∗ =
{
O∗1, . . . ,O

∗
k

}
of X, the

5

Algorithm 1: Cost-Balanced k-Means Algorithm

Input: Set of points X ⊂ �d, number of clusters k, and an error parameter ε.
Output: A cost-balanced k-means clustering �A.

1. Let N = 136448 k
ε3 , M = 100

ε
.

2. Initialize L to ∅. L will contain a list of candidate means of a clustering, where each
candidate mean is a set of exactly k centers.

3. Repeat 2k times:

- Make a call to (Algorithm 2) Sample-Centers(X, k, ε,L, 0, {}).

4. For each tuple t in L:

- Form a matrix J[k×n], where J(i, j) =
∥∥∥ti − x j

∥∥∥2
.

- Input t,J to the Jansen & Mastrolilli’s [JM10] algorithm for minimum makespan
scheduling on unrelated machines.

- Maintain the clustering with the minimum cost.

5. Return the minimum cost clustering �A.

Algorithm 2: Sample-Centers Algorithm (Subroutine of Algorithm 2.1, [BJK18])

Input: Set of points X ⊂ �d, number of clusters k, an error parameter ε, a list L of k-tuples, index i , and a set C
of centers.

1. Set N = 136448 k
ε3 , M = 100

ε
, S ′ = ∅.

2. If (i = k) then add C to the set L.

3. else

(a) S is an i.i.d. sample of N points picked by D2-sampling (Definition 2.1) w.r.t. C.

(b) S ′ ← S .

(c) For all c ∈ C : S ′ ← S ′ ∪
{
M copies of c

}
.

(d) For all subsets T which is a collection of M points from S ′ (with repetitions allowed):

i. C ← C ∪ {µ(T)}, where µ(T) is the means of points in the set T .
ii. Sample-Centers(X, k, ε,L, i + 1,C).

6

following event happens with probability at least 1/2: there exists a set C ∈ L such that

costC(�∗) 6 (1 + ε) OPT .

Moreover, the running time of the algorithm is O
(
nd 2Õ(k/ε)

)
.

We will prove Theorem 2.2 in Section B. Theorem 2.2 gives us a way to estimate the centers of a good clustering
(i.e., a clustering whose cost-balanced k-means cost is at most 1 + ε times OPT). However, recovering a good clustering
by “assigning” points to these centers is a non-trivial problem; Proposition 1.13 shows that even if the centers of the
optimal clustering are known, recovering the optimal clustering from it is an NP-hard problem). We reduce the problem
of assigning the points to the cluster centers, to the problem of scheduling jobs on machines so as to minimize the
makespan. More formally, the scheduling problem is the following.

Problem 2.3. There are k parallel machines and n independent jobs. Each job is to be assigned to one of the machines.
The processing of job j on machine i requires time pi, j. The objective is to find a schedule that minimizes the makespan
(the total time that elapses from the beginning to the end).

The problem of assigning points to the cluster centers can be viewed as a special case of Problem 2.3. This follows
from the following lemma.

Lemma 2.4. Given a set of n points X = {x1, ..., xn} and a set C = {c1, ..., ck} of k points in �d, one can construct an
instance of minimizing the makespan of scheduling on unrelated parallel machines, the cost of which is the same as the
cost of a clustering �∗ =

{
O∗1, ...,O

∗
k

}
which minimizes the costC(�∗).

Proof. We use the index i for the set of machines and j for the jobs. We treat the n points X as n jobs and the set C of k
points as k unrelated parallel machines. For a job j, the processing on machine i is the following: pi, j =

∥∥∥x j − ci

∥∥∥2
. We

note that a schedule corresponds to a clustering: since each job is assigned only to one machine, and all the jobs are
processed. The makespan of a schedule is equal to the sum of processing times assigned to the machine with the largest
“load”.

Given an optimal solution of minimizing the makespan of scheduling on unrelated parallel machines to the instance
constructed above, one can find an optimal clustering �∗ =

{
O∗1, ...,O

∗
k

}
which minimizes the costC(�∗) as follows: if

a job j is scheduled on a machine i, then x j is put in the O∗i cluster (x j ∈ O∗i). By construction, the makespan of the
schedule corresponds to costC(�∗). �

However, as mentioned above, given a set X of n points and a set C of k points it is NP-Hard to find an optimal
clustering �∗ which minimizes the costC(�∗). We prove this in the Proposition 1.13.

Jansen and Mastrolilli [JM10] gave a (1+ε) approximation algorithm for the minimizing the makespan of scheduling
n jobs on k unrelated parallel machines, which runs in O (n) + 2O(k log(1/ε)).

Theorem 2.5 ([JM10]). There is an (1 + ε)-approximation algorithm for the non-preemptive minimum makespan
problem with n jobs and k unrelated parallel machines that runs in O (n) + 2Õ(k/ε).

Proof of Theorem 1.6. After the Step 3 of Algorithm 1, the algorithm constructs a list L of the candidate centers (recall
that the L is a is a list of candidate centers for a clustering, where each candidate center is a set of exactly k points),
the optimal assignment to one of which gives a (1 + ξ)-approximation to the optimal cost-balanced k-means. This is
guaranteed by Theorem 2.2. The Step 4 of Algorithm 1 finds a clustering (using the reduction from the Lemma 2.4)
for all the k-tuple t in L. For at least one t ∈ L we get an assignment to the given candidate centers t, which is a
(1 + ξ)-approximation to optimal assignment to the candidate set of centers. Therefore, denoting the optimal clustering
obtained by the set of centers C as �C and the clustering obtained by our algorithm as �A, we get the following
inequalities:

K
(
�

A
)
6 costC(�A) 6 (1 + ξ)costC(�C) 6 (1 + ξ)2OPT ,

where the first inequality is direct as K
(
�A

)
is the cost-balanced k-means cost of the clustering �A, and costC(�A) is

the cost, when the centers of a cluster are constrained to be in the set C. From Theorem 2.5 we get that costC(�A) 6
(1 + ξ)costC(�C). From Theorem 2.2 we get that (1 + ξ)costC(�C) 6 (1 + ξ)2OPT.

7

Therefore, setting ε = ξ/3, we get that
K

(
�

A
)
6 (1 + ε)OPT .

Run-time Analysis: The size of the list L produced by Step 3 of Algorithm 1 is 2Õ(k/ε). The time required to obtain
such a list is O

(
nd 2Õ(k/ε)

)
. The step 4 of Algorithm 1 uses the Algorithm by Jansen and Mastrolilli [JM10] for each set

of centers t. The algorithm simply iterates over the list L and use the algorithm given by Jansen and Mastrolilli [JM10]
and we obtain a running time of:(

O (nd) + 2Õ(k/ε)
)

2Õ(k/ε) + O
(
nd 2Õ(k/ε)

)
= O

(
nd 2Õ(k/ε)

)
.

The success probability of the algorithm is determined by Theorem 2.2, which is a constant. �

3 Bi-Criteria Approximation
Given a metric space (X, dist), where X represents the set of points and dist(u, v) is the distance between u, v ∈ X.
Suppose we had access to an algorithm which would a α-factor approximation to the following `p cost k-clustering
objective: Find a k-partitioning of the points into O1, ...,Ok, and corresponding centers c1, ..., ck ∈ X such that(∑k

i=1
∑

u∈Oi
dist(u, ci)p

) 1
p is minimized, where p ∈ �+. For p = 1, the problem becomes k-median.

In this section, we will show a procedure that would give a bi-criteria (α(2(1 + ξ)/ε)
1
p , (1 + ε)), where ξ > 0, ε > 0

are parameters to the algorithm, approximation of the `p cost-balnced k-clustering problem, i.e., find a k-partitioning of

the points into O1, ...,Ok, with corresponding centers c1, ..., ck ∈ X such that
(
maxi∈[k]

∑
u∈Oi

dist(u, ci)p
) 1

p is minimized,

for p ∈ �+, in time poly
(
n, k, p, 1

log(1+ξ)

)
.

Our procedure would partition the points into (1 + ε)k clusters and give a
(
(2((1 + ξ)/ε)

1
pα

)
-factor approximation to the

objective.
Notations: Let OPT be the optimal `p cost-balnced k-clustering cost and let OPTΣ be the optimal `p cost k-

clustering cost. Let G be the α-approximation algorithm for `p cost k-clustering problem, which outputs the clusters as
� = {O1, . . . ,Ok} with corresponding centers as � = {c1, ..., ck}. Let ∆(Oi, ci) =

∑
x∈Oi

dist (x, ci)p be `p
p assignment cost

for cluster Oi.

Algorithm 3: Bi-Criteria approximation for `p cost-balanced k-clustering problem

Input: Metric space (X, dist), number of clusters k, error parameters ε and ξ, and an α-approximation algorithm
G for the `p cost k-clustering problem.

Output: (1 + ε)k clusters �A, and centers �A such that Kp(�A,�A) =
(

2(1+ξ)
ε

) 1
p αOPT.

1. �A,�A = ∅

2. Run G and obtain a k-partition of X into � = {O1, . . . ,Ok} with corresponding centers as � = {c1, ..., ck}.

3. Guess the value of OPTp within a factor of (1 + ξ) and let that value be denoted by OPTg.

4. For each Oi, i ∈ [k], do

(a) Make a separate cluster for each of the points in x ∈ Oi with dist (x, ci)p >
2αpOPTg

ε
and

add each of them to �A and �A

(b) If Oi is not empty, assign points from Oi to ci in a greedy manner until total cost doesn’t exceed
2αpOPTg

ε
and add this cluster to �A and ci to �A. Remove all assigned points from Oi.

(c) Go to 4(b) again if Oi is not empty.

8

Lemma 3.1. If the guess OPTg in step 3 of Algorithm 3 is between OPTp and (1 + ξ)OPTp, then the number of centers
opened by Algorithm 3 is at most (1 + ε)k, and the `p

p assignment cost for each cluster is at most
(

2(1+ξ)
ε

)
αpOPTp. The

running time of the algorithm is O
(

n(log(k)+p log(α))
log(1+ξ)

)
+ RunningTime(G).

Proof. We know that OPTp
Σ
6 kOPTp and solution returned by G gives a α-factor approximation to OPTΣ. Therefore,

the following equation holds:
k∑

i=1

∑
x∈Oi

dist (x, ci)p 6 kαpOPTp . (3)

Step 4 of the algorithm partitions each Oi, i ∈ [k] , into smaller clusters (with their corresponding center), each with
the cost of at most 2αpOPTg

ε
.

Let S ⊆ X be set of points selected by step 4(a) of the algorithm,

k∑
i=1

∆(S ∩ Oi, ci) =

k∑
i=1

∑
x∈S∩Oi

dist (x, ci)p >
2αpOPTg |S |

ε
(4)

Since
∑k

i=1 ∆(Oi, ci) =
∑k

i=1 (∆(Oi \ S , ci) + ∆(S ∩ Oi, ci)),

k∑
i=1

∆(Oi \ S , ci) 6
k∑

i=1

∆(Oi, ci) −
2αpOPTg |S |

ε
(5)

The inequality in above equation follows from inequality of (4).
For each i, step 4(b) could be thought as bin packing problem where items corresponds to clients in Oi \ S and capacity
of bin is 2αpOPTg

ε
. Each point x ∈ Oi \ S could be thought of as item having weight dist (x, ci)p. The sum of weight of

corresponding bin packing instance for cluster Oi is at most ∆(Oi \ S , ci).
If bin packing instance have total size of items W and capacity of each bin is w then, first fit bin packing algorithm

opens at most
(
2 W
w

+ 1
)

bins. This result has been proved in Problem 9.1 of chapter 9 of [Vaz03].

By using the above fact, step 4(b) of the algorithm will partition Oi \ S into at most 2 ε∆(Oi\S ,ci)
2αpOPTg

+ 1. So the total
number of clusters opened by step 4(b) of the algorithm Algorithm 3 is at most

2
k∑

i=1

ε∆(Oi \ S , ci)
2αpOPTg

+ k = 2
ε∑k

i=1 ∆(Oi \ S , ci)
2αpOPTg

 + k

6 2
ε∑k

i=1 ∆(Oi, ci)
2αpOPTg

 − 2 |S | + k

6 (1 + ε)k − 2 |S | .

Second inequality follows from (5) and third inequality in above equation follows from (3) and our assumption that
OPTp 6 OPTg.
Total number of clusters opened by Algorithm 3 is sum of number of clusters opened by step 4(a) and 4(b) which is at
most (1 + ε)k − |S | 6 (1 + ε)k.
Step 4(a) ensures that each cluster returned by algorithm has `p

p assignment cost at most
(

2(1+ξ)
ε

)
αpOPTp.

Run-Time Analysis: Let the ∆p(G) = ∆p(�,�). We know that ∆
p
p(G)
kαp 6 OPTp 6 ∆

p
p(G), since OPTp

Σ
6 kOPTp

and ∆
p
p(G) 6 αpOPTp

Σ
. Therefore, the maximum number of iterations needed in the step 3 of the algorithm to get within

a factor of (1 + ξ) to OPTp is at most log(k)+p log(α)
log(1+ξ) . The step 4 takes time linear in the number of points n. �

Remark 3.2. Note that the set of centers returned by Algorithm 3 depends on set of centers returned by G. If G is the
discrete version of the `p cost k-clustering, then the set of centers returned by G belongs to X. If G is the Euclidean
version of the `p cost k-clustering, then the set of centers returned by G belongs to �d.

Proof of Theorem 1.8. The theorem follows directly from the above Lemma 3.1. �

9

4 Lower Bound
Proof of Proposition 1.13. The minimum makespan scheduling on identical machines is defined as follows Given
processing times for n jobs, p1, p2, ..., pn, and an integer k, find an assignment of the jobs to k identical machines so
that the completion time, also called the makespan, is minimized. The problem of minimum makespan scheduling (on
identical machines) is NP-hard. The problem is NP-hard, even if there are only two identical machines [GJ90]. This
problem can be seen as a special case of Problem 2.3.

Suppose we are given an instance of minimum makespan scheduling with k machines and n jobs, and a processing
time of p j for each job j ∈ [n]. We will construct an instance of cost-balanced k-means problem with a given set of
centers. For each machine i ∈ [k] we assign a zero vector in � (on a line). For each job j, we look at the value at the
running time p j and set x j =

√p j on the line. Set set {x1, . . . , xn} form our instance of cost-balanced k-means problem
with a given set of centers.

If we can solve cost-balanced k-means problem with a given set of centers optimally in polynomial time, then we
can solve the problem of minimum makespan scheduling (on identical machines) in polynomial time (by construction,
as the cost of assigning a point xi to a cluster is equivalent to the running time of job i, which is pi). Therefore, the
proof is complete by contrapositive of the above statement. �

Acknowledgements
AL is grateful to Microsoft Research for supporting this collaboration. AL would like to thank Moses Charikar and
Paris Syminelakis for helpful discussions. AL was supported in part by SERB Award ECR/2017/003296. The authors
would like to thank anonymous reviewers for their valuable feedback.

A LP Relaxation and Integrality Gap Instance Due to [Cha18]
We try to look at the discrete version of cost-balanced k-means , where the cluster centers are constrained to come
from the set of given points. One can try to approach such a problem via integer linear programming (ILP), similar to
facility location problems. A natural ILP for the discrete version of the cost-balanced k-means would be as follows. For
convenience, let us denote F as the set of facilities, and C as the set of clients. In our case, C = F = X. Let the distance
between the ith facility and the jth location be denoted by d(i, j). We define the variables yi for i ∈ {1, ..., |X|}, and xi j for
i ∈ {1, ..., |X|} and j ∈ {1, ..., |X|}.

minimize α

subjected to
∑
i∈F

xi j = 1, ∀ j ∈ C;∑
i∈F

yi 6 k;

xi j 6 yi, ∀i ∈ F , j ∈ C;∑
j∈C

d(i, j)2 xi j 6 α, ∀i ∈ F ;

yi, xi j ∈ {0, 1} , ∀i ∈ F , j ∈ C.

We can relax the last constraint, such that the variables xi j, yi ∈ [0, 1]. We show that the relaxed linear program has an
integrality gap of k + 1. The constraints of the above ILP are a standard set of constraints, which are used for analyzing
facility location problems; with an additional constraint, that the cost of each cluster should be less that some quantity
α. Therefore, the objective is to minimize the α.

The following integrality gap instance was pointed to us by Charikar [Cha18]. Consider the following instance, with
k + 1 points, i.e., |X| = k + 1. The points are at a distance of 1 from each other, i.e., d(i, j) = 1 for i , j and d(i, i) = 0.
The optimal discrete cost-balanced k-means solution for such an instance would show up if we choose any k points as
centers. The cost for such k points is 0. For the (k + 1)th point, we assign it to any one of the k points. This yields a

10

discrete cost-balanced k-means cost of 1. The relaxed linear programming solution is yi = 1 − 1
k+1 , and xii = 1 − 1

k+1 ,
and xi j = 1

k(k+1) , for all i , j ∈ X. Whence we evaluate the cost of the optimal fractional linear program, we get that
cost is 1/(k + 1). Therefore, this yields an integrality gap of greater than (k + 1).

B Finding Good Candidate Centers
The following fact is commonly known as the parallel axis theorem. We will state it as a fact.

Fact B.1. For any X ⊂ �d and c ∈ �d, we have∑
x∈X

‖x − c‖2 =
∑
x∈X

‖x − µ(X)‖2 + |X| ‖c − µ(X)‖2 .

We will also use a triangle inequality type inequality for squared Euclidean norm. We call it the approximate
triangle inequality.

Fact B.2 (Approximate Triangle Inequality). For any x, y, z ∈ �d, we have

‖x − z‖2 6 2
(
‖x − y‖2 + ‖y − z‖2

)
.

We will use the following result which shows that to estimate the 1-means cost of a set of points (in our case, one
the k clusters), it suffices to estimate its mean using a random sample of points from it.

Lemma B.3 ([IKI94]). Let S be a set of points obtained by i.i.d. uniformly sampling M points from a point set X ⊂ �d.
Then for any δ > 0,

�

[
φµ(S)(X) 6

(
1 +

1
δM

)
· ∆(X)

]
> (1 − δ) .

Proof of Theorem 2.2. The proof of Theorem 2.2 is similar to the Theorem 1 of [BJK18], with minor modifications.
They consider the k-means objective, where the cost of a k-clustering is the sum of all the k clusters. In our case
(cost-balanced k-means), we have that the cost of a k-clustering is the maximum of the individual k clusters. Therefore
using the analysis of [BJK18] and fact that the sum of cost of the k clusters is at most k times the cost of the maximum
cluster, we obtain the statement of Theorem 2.2. We reproduce many statements from [BJK18] with nearly identical
proofs but cannot simply use the lemmas from [BJK18] as black-boxes because the OPT in our paper is the optimum of
the cost-balanced k-means and not the usual ‘min-sum’ type objectives as in [BJK18].

It will be useful to think of the execution of this algorithm as a tree T of depth k. Each node in the tree can be
labeled with a set C, it corresponds to the invocation of Algorithm 2 with this set as C (and i being the depth of this
node). The children of a node denote the recursive function calls by the corresponding invocation of Algorithm 2.
Finally, the leaves denote the set of candidate centers constructed by the algorithm.

We will argue that the following invariant P(i) is maintained during the recursive calls to the Sample-centers
Algorithm 2:
P(i) : With probability at least 1

2i−1 , there is a node vi at depth (i − 1) in the tree T and a set of (i − 1) distinct clusters
O∗j1 ,O

∗
j2
, . . . ,O∗ji−1

such that

∀l ∈ {1, . . . , i − 1} , φcl (O
∗
jl) 6

(
1 +

ε

2

)
∆(O∗jl) +

ε

2
OPT , (6)

where c1, . . . , ci−1 are the centers in the set Cvi corresponding to vi.
We prove this via induction.

Base Case: The base case for i = 1 follows trivially: the vertex v1 is the root of the tree T and Cv1 is empty.
Induction Step: We now assume that P(i) holds for some i > 1. We will prove that P(i + 1) also holds. For ease
of notation, without loss of generality, we assume that the index ji is i, and use Ci to denote Cvi . Thus, the center cl

corresponds to O∗l , 1 6 l 6 i − 1.
We will use the index i′ to represent a new un-sampled cluster i′ > i. Note that φCi (O

∗
i′) is proportional to the

probability that a point sampled from X using D2-sampling w.r.t. centers Ci comes from O∗i′ . Let ī be the index i′ for

11

which φCi (O
∗
i′) is the maximum. We will argue that the invocation of sample centers in step 3(d)(i) will consider a point

ci, such that the following property holds with probability at least 1/2:

φci (O
∗

ī) 6
(
1 +

ε

2

)
∆(O∗ī) +

ε

2
OPT .

We break the analysis into two parts:

Case 1:

 φCi (O
∗

ī
)∑k

j=1 φCi (O
∗
j)
<

ε

13k

 & Case 2:

 φCi (O
∗

ī
)∑k

j=1 φCi (O
∗
j)
>

ε

13k

 .
The condition of these two cases are identical as given in [BJK18].

Case 1
(

φCi (O
∗

ī
)∑k

j=1 φCi (O
∗
j)
< ε

13k

)
: This captures the scenario where the probability of sampling from uncovered clusters is

very small. In this case we argue that a convex combination of centers in Ci provides a good approximation to ∆(O∗
ī
).

The following lemma is a slight modification of the Lemma 2 of [BJK18]. The OPT for cost-balanced k-means is
not the sum of 1-means cost of all the optimal clusters. Instead, it is the 1-means cost of the heaviest cluster.

Lemma B.4. φCi (O
∗

ī
) 6 ε

6 OPT .

Proof. Let D def
=

∑k
j=1 φCi (O

∗
j). Using the induction hypothesis and the fact that φCi (O

∗

ī
) > φCi (O

∗
j) for j > i, we get that

D =

i−1∑
j=1

φCi (O
∗
j) +

k∑
j=i

φCi (O
∗
j) 6

(
1 +

ε

2

) i−1∑
j=1

∆(O∗j) +
εk
2

OPT + kφCi (O
∗

ī) .

Since the Case 1 gives us that φCi (O
∗

ī
) 6 ε

13k D, and using the fact that ∆(O∗j) 6 OPT for 1 6 j 6 k, we get

D 6
ε

13
D + (1 + ε)kOPT 6

(
(1 + ε)k
1 − ε/13

)
OPT .

Finally,
φCi (O

∗

ī) 6
ε

13k
D 6

ε

6
OPT .

�

For each point p ∈ O∗
ī
, let c(p) denote the closest center in Ci. We now define a multi-set O′

ī
as

{
c(p) : p ∈ O∗

ī

}
.

Note that O′
ī

is obtained by taking multiple copies of points in Ci. The remaining part of the proof proceeds in two
steps. Let m∗ and m′ denote the denote mean of O∗

ī
and O′

ī
respectively. First we will show that m′ and m∗ are close.

Second, we will show that if we have a good approximation m′′ to m′, then assigning all the points of O∗
ī

to m′′ will
incur small cost compared to ∆(O∗

ī
). Observe that∑

p∈O∗
ī

‖p − c(p)‖2 = φCi (O
∗

ī) .

The following lemma is identical to the lemma 3 of [BJK18]

Lemma B.5 (Lemma 3, [BJK18]). ‖m∗ − m′‖2 6
φCi (O

∗

ī
)∣∣∣∣O∗ī ∣∣∣∣ .

Proof. Let s denote
∣∣∣O∗

ī

∣∣∣. Then,

∥∥∥m∗ − m′
∥∥∥2

=
1
s2

∥∥∥∥∥∥∥∥
∑
p∈O∗

ī

(p − c(p))

∥∥∥∥∥∥∥∥
2

6
1
s

∑
p∈O∗

ī

‖p − c(p)‖2 =
φCi (O

∗

ī
)

s
,

where the inequality follows from triangle inequality followed by Cauchy-Schwarz inequality. �

12

Next we show that ∆(O∗
ī
) and ∆(O′

ī
) are close (identical to the lemma 4 of [BJK18]).

Lemma B.6 (Lemma 4, [BJK18]). ∆(O′
ī
) 6 2φCi (O

∗

ī
) + 2∆(O∗

ī
).

Proof. The lemma follows from the following inequalities

∆(O′ī) =
∑
p∈O∗

ī

∥∥∥c(p) − m′
∥∥∥2
6

∑
p∈O∗

ī

‖c(p) − m∗‖2

6 2
∑
p∈O∗

ī

(
‖c(p) − p‖2 + ‖p − m∗‖2

)
= 2φCi (O

∗

ī) + 2∆(O∗ī) ,

where the first inequality follows from Fact B.1 second inequality follows from approximate triangle inequality for
squared norm Fact B.2. �

Finally we argue that a good center for O′
ī

will also serve as a good center for O∗
ī
.

The following lemma is a slight modification of lemma 5 of [BJK18], where we use the Lemma B.4 instead of
Lemma 2 of [BJK18].

Lemma B.7. Let m′′ be a point such that φm′′ (O′ī) 6
(
1 + ε

8

)
∆(O′

ī
). Then φm′′ (O∗ī) 6

(
1 + ε

2

)
∆(O∗

ī
) + ε

2 OPT.

Proof. Let s∗ denote
∣∣∣O∗

ī

∣∣∣. Observe that

φm′′ (O∗ī) =
∑
p∈O∗

ī

∥∥∥m′′ − p
∥∥∥2

=
∑
p∈O∗

ī

‖m∗ − p‖2 + s∗
∥∥∥m∗ − m′′

∥∥∥2 (Fact B.1) .

6 ∆(O∗ī) + 2s∗
(∥∥∥m∗ − m′

∥∥∥2
+

∥∥∥m′ − m′′
∥∥∥2

)
(Fact B.2)

6 ∆(O∗ī) + 2φCi (O
∗

ī) + 2s∗
∥∥∥m′ − m′′

∥∥∥2
(Lemma B.5)

6 ∆(O∗ī) + 2φCi (O
∗

ī) + 2
(
φm′′ (O′ī) − ∆(O′ī)

)
(Fact B.1)

6 ∆(O∗ī) + 2φCi (O
∗

ī) +
ε

4
∆(O′ī)

(
φm′′ (O′ī) 6

(
1 +

ε

8

)
∆(O′ī)

)
6 ∆(O∗ī) + 2φCi (O

∗

ī) +
ε

2

(
φCi (O

∗

ī) + ∆(O∗ī)
)

(Lemma B.6)

6
(
1 +

ε

2

)
∆(O∗ī) +

ε

2
OPT . (Lemma B.4)

�

The above lemma tells us that it will be sufficient to obtain a (1 + ε/8)-approximation to the 1-means problem for
the data-set O′

ī
. Lemma B.3 tells us that there is a subset (as a multi-set) O′′ of size 16

ε
of O′

ī
such that the mean m′′ of

these points satisfy the condition of Lemma B.7. Observe that O′′ will be a subset of the set S constructed in the step 3
of Algorithm 2. In step 3(c), we add more than 16

ε
copies of each point in Ci to S . In step 3(d), the algorithm goes over

all subsets of size 16
ε

of S , and for each such subset, it tries adding its mean to Ci. In particular, there will be recursive
call of this function, where the algorithm will have Ci+1 = Ci ∪ {m′′} as the set of centers. Lemma B.7 implies that Ci+1
will satisfy the invariant P(i + 1). Thus, we are done in this case.

Rest of the analysis is identical to [BJK18], as the case 2 (roughly) corresponds to the fact that with good enough
probability, we can sample sufficient points from the desired cluster.

Case 2
(

φCi (O
∗

ī
)∑k

j=1 φCi (O
∗
j)
> ε

13k

)
:

We divide the points in O∗
ī

into two parts: points which are close to a center in Ci, and the remaining points. More
formally, let radius R be given by

R2 def
=
ε2

41

φCi (O
∗

ī
)∣∣∣∣O∗ī ∣∣∣∣ . (7)

13

Define On
ī

as the points in O∗
ī

which are within distance R of a center Ci,

On
ī

def
=

{
p ∈ O∗ī : min

c∈Ci
‖p − c‖ 6 R

}
,

and O f
ī

be the rest of the points in O∗
ī
, O f

ī
def
= O∗

ī
\ On

ī
. As in Case 1, we define a new set O′

ī
where each point in On

ī
is

replaced by a copy of corresponding point in Ci, ie., for a point p ∈ On
ī
, define c(p) as the closest center in Ci to p. Now

define a multi-set O′
ī

as O f
ī
∪

{
c(p) : p ∈ On

ī

}
. Clearly,

∣∣∣O′
ī

∣∣∣ =
∣∣∣O∗

ī

∣∣∣. We will argue, that any center that provides a good
1-means approximation for O′

ī
, also provides a good approximation for O∗

ī
.

Let m∗ and m′ denote the mean of O∗
ī

and O′
ī

respectively. Let s∗ and s denote the size of the sets O∗
ī

and On
ī

respectively. First, we show that ∆(O∗
ī
) is large with respect to R.

Lemma B.8 (Lemma 6, [BJK18]). ∆(O∗
ī
) = φm∗ (O∗ī) > 16s

ε2 R2.

Proof. Let c be the center in Ci which is closest to m∗. We divide the proof into two cases:

(i) ‖m∗ − c‖ > 5
ε
R: For any point p ∈ On

ī
, triangle inequality implies that

‖p − m∗‖ > ‖c(p) − m∗‖ − ‖c(p) − p‖ >
5
ε

R − R >
4
ε

R .

Therefore,

∆(O∗ī) >
∑
p∈On

ī

‖p − m∗‖2 >
16s
ε2 R2 .

(ii) ‖m∗ − c‖ < 5
ε
R: In this case, we have

φm∗ (O∗ī) = φc(O∗ī) − s∗ ‖m∗ − c‖2 (Fact B.1)

> φCi (O
∗

ī) − s∗ ‖m∗ − c‖2

>
41s∗

ε2 R2 −
25s∗

ε2 R2 (
Using (7)

)
>

16s
ε2 R2 .

�

Lemma B.9 (Lemma 7, [BJK18]). ‖m∗ − m′‖2 6 s
s∗R

2.

Proof. Since the only difference between O∗
ī

and O′
ī

is On
ī
, we get

∥∥∥m∗ − m′
∥∥∥2

=
1

(s∗)2

∥∥∥∥∥∥∥∥
∑
p∈On

ī

(p − c(p))

∥∥∥∥∥∥∥∥
2

6
s

(s∗)2

∑
p∈On

ī

‖p − c(p)‖2 6
s2

(s∗)2 R2 6
s
s∗

R2 ,

where the first inequality follows from the Cauchy-Schwartz inequality. �

We now show that ∆(O′
ī
) is close to ∆(O∗

ī
)

Lemma B.10 (Lemma 8, [BJK18]). ∆(O′
ī
) 6 4sR2 + 2∆(O∗

ī
).

14

Proof. The lemma follows from the following inequalities.

∆(O′ī) =
∑
p∈On

ī

∥∥∥c(p) − m′
∥∥∥2

+
∑
p∈O f

ī

∥∥∥p − m′
∥∥∥2

6
∑
p∈On

ī

2
(
‖c(p) − p‖2 +

∥∥∥p − m′
∥∥∥2

)
+

∑
p∈O f

ī

∥∥∥p − m′
∥∥∥2

(Fact B.2)

6 2sR2 + 2
∑
p∈O∗

ī

∥∥∥p − m′
∥∥∥2

= 2sR2 + 2φm′ (O∗ī)

= 2sR2 + 2
(
∆(O∗ī) + s∗

∥∥∥m′ − m∗
∥∥∥) (Fact B.1)

6 4sR2 + 2∆(O∗ī) .
(
Using Lemma B.9

)
�

We now argue that any center that is good for O′
ī

is also a good center for O∗
ī
.

Lemma B.11 (Lemma 9, [BJK18]). Let m′′ be such that φm′′ (O′ī) 6
(
1 + ε

16

)
∆(O′

ī
). Then φm′′ (O∗ī) 6

(
1 + ε

2

)
∆(O∗

ī
).

Proof. The lemma follows from the following inequalities.

φm′′ (O∗ī) =
∑
p∈O∗

ī

∥∥∥m′′ − p
∥∥∥2

=
∑
p∈O∗

ī

‖m∗ − p‖2 + s∗
∥∥∥m∗ − m′′

∥∥∥2
(Fact B.1)

6 ∆(O∗ī) + 2s∗
(
‖m∗ − m‖2 +

∥∥∥m′ − m′′
∥∥∥2

)
(Fact B.2)

6 ∆(O∗ī) + 2s∗
∥∥∥m′ − m′′

∥∥∥2
+ 2sR2 (Lemma B.9)

6 ∆(O∗ī) + 2sR2 + 2
(
φm′′ (O′ī) − ∆(O′ī)

)
(Fact B.1)

6 ∆(O∗ī) + 2sR2 +
ε

8
∆(O′ī)

6 ∆(O∗ī) + 2sR2 +
ε

2
sR2 +

ε

4
∆(O∗ī) (Lemma B.10)

6
(
1 +

ε

2

)
∆(O∗ī) . (Lemma B.8)

�

Given the above lemma, all we need to argue is that our algorithm considers a center m′′ such that φm′′(O′ī) 6(
1 + ε

16

)
∆(O′

ī
). For this we would need about O (1/ε) uniform samples from O′

ī
. However, our algorithm can only

sample only using D2-sampling w.r.t. Ci. For ease of notation, let c(On
ī
) denote the multiset

{
c(p) : p ∈ On

ī

}
. Recall that

O′
ī

consists of O f
ī

and c(On
ī
). The first observation is that the probability of sampling an element from O f

ī
is reasonably

large (proportional to ε/k). Using this fact, it can be shown how to sample from O′
ī

almost uniformly. The second
observation is that one can convert the previous almost uniform sampling to uniform sampling, (at the cost of increasing
the size of the sample). The rest of the details of the sampling follows from [BJK18]. We include those for completeness
sake.

Lemma B.12 (Lemma 10, [BJK18]). Let x be a sample from D2-sampling w.r.t. Ci. Then, �
[
x ∈ O f

ī

]
> ε

15k . Further

for any point p ∈ O f
ī
, �[x = p] > γ∣∣∣∣O∗ī ∣∣∣∣ , where γ = ε2

533k .

15

Proof. Note that
∑

p∈O∗
ī
\O f

ī
�[x = p] 6 R2

φCi (X)

∣∣∣O∗
ī

∣∣∣ 6 ε2

41
φCi (O

∗

ī
)

φCi (X) . Therefore, the fact that we are in the Case 2 implies that

�
[
x ∈ O f

ī

]
> �[x ∈ O∗ī] − �

[
x ∈ O∗ī \ O f

ī

]
>
φCi (O

∗

ī
)

φCi (X)
−
ε2

41

φCi (O
∗

ī
)

φCi (X)
>

ε

15k
.

Also if x ∈ O f
ī
, then φCi ({x}) > R2 = ε2

41
φCi (O

∗

ī
)∣∣∣∣O∗ī ∣∣∣∣ . Therefore,

φCi ({x})
φCi (X)

>
ε

13k
R2

φCi (O
∗

ī
)
>

ε

13k
ε2

41
1∣∣∣∣O∗ī ∣∣∣∣ >

ε2

533k
1∣∣∣∣O∗ī ∣∣∣∣ .

This completes the proof of the lemma. �

Let X1, . . . , Xl be l points sampled independently using D2-sampling w.r.t. Ci. We construct a new set of random
variables Y1, . . . ,Yl. Each variable Yu will depend only on Xu, and will take values either in O′

ī
or will be ⊥. These

variable are defined as follows: if Xu < O f
ī
, we set Yu to ⊥, otherwise, we assign Yu to one of the following random

variables with equal probability: (i) Xu or (ii) a uniformly at random element of the multi-set c(On
ī
). The following

observation follows from the Lemma B.12.

Corollary B.13 (Corollary 2, [BJK18]). For a fixed index u, and an element x ∈ O′
ī
, �[Yu = x] > γ′∣∣∣∣O′ī ∣∣∣∣ , where γ′ = γ/2.

Proof. If x ∈ O f
ī
, them we know from Lemma B.12 that Xu is x with probability at least γ∣∣∣∣O′ī ∣∣∣∣ . Conditioned on this

event, Yu = Xu with probability 1/2. Now suppose x ∈ c(On
ī
), Lemma B.12 implies that Xu is an element of O f

ī
with

probability at least ε
15k . Conditioned on this event, Yu will be equal to x with probability at least 1

2
1∣∣∣∣c(On

ī
)
∣∣∣∣ . Therefore

�[Xu = x] >
ε

15k
1

2
∣∣∣∣c(On

ī
)
∣∣∣∣ > ε

30k
∣∣∣∣O′ī ∣∣∣∣ >

γ′∣∣∣∣O′ī ∣∣∣∣ .
�

Corollary B.13 shows that we can obtain samples from O′
ī

which are nearly uniform (up to a constant factor). To
convert this to a set of uniform samples, we use the idea of [JKS14]. For an element x ∈ O′

ī
, let γx be such that γx∣∣∣∣O′ī ∣∣∣∣

denotes the probability that the random variable Yu is equal to x. Corollary B.13 implies that γx > γ
′. We define a new

set of independent random variables Z1, . . . ,Zl. The random variable Zu will depend only on Yu. If Yu is ⊥ then Zu is ⊥.
If Yu is equal to x ∈ O′

ī
, then Zu take the value x with probability γ′

γx
, and ⊥ with remaining probability. Note that Zu is

either ⊥ or one of the elements of O′
ī
. Further, conditioned on the latter event, it is a uniform sample from O′

ī
. We can

now prove the key lemma.

Lemma B.14 (Lemma 11, [BJK18]). Let l be 128
γ′ε

, and m′′ denote the mean of non-null samples from Z1, . . . ,Zl. Then
with probability at least 1/2, φm′′ (O′ī) 6 (1 + ε/16)∆(O′

ī
).

Proof. Note that random variable Zu is equal to a specific element of O′
ī

with probability equal to γ′∣∣∣∣O′ī ∣∣∣∣ , and it takes ⊥

with probability 1 − γ′. Now consider a different set of iid random variables Z′u, 1 6 u 6 l as follows: each Zu tosses a
coin with probability of heads being γ′. If we get heads, it gets value ⊥, otherwise it is equal to a random element of O′

ī
.

The joint distribution of the random variable Z′u is identical to that of the random variable Zu. Thus it suffices to prove
the statement of the lemma for random variable Z′u.

Now we condition on coin tosses of the random variables Z′u. Let s′ be the number of random variables which are
not ⊥ (s′ is a deterministic quantity because we have conditioned on coin tosses). Let m′′ be the mean of such non-⊥
variables among Z′1, . . . ,Z

′
l . If s′ happens to be larger than 64/ε, Lemma B.3 implies that with probability at least 3/4,

φm′′ (O′ī) 6 (1 + ε/16)∆(O′
ī
).

Finally, observe that the expected number of non-⊥ variables is γ′l > 128/ε. Therefore, with probability at least
3/4, the number of non-⊥ elements will be at least 64/ε. �

16

Let C(l)
i denote the multi-set obtained by taking l copies of each of the centers in Ci. Now observe that all the non-⊥

elements among Y1, . . . ,Yl are elements of {X1, . . . , Xl} ∪C(l)
i , and so the same must hold for Z1, . . . ,Zl. This implies

that in Step 3(d) of Algorithm 1, we would have tried adding the point m′′ as described in Lemma B.14. Therefore, the
induction hypothesis continues to hold with probability at least 1/2.

Runtime Analysis: Recall that the size of the list L constructed by Algorithm 1 is 2Õ(k/ε), and therefore the running
time of the algorithm is O

(
nd 2Õ(k/ε)

)
. �

C (1 + ε)-Approximation for Cost-Balanced k-Median Clustering
The setting for the cost-balanced k-median is same as that for cost-balanced k-means problem, except for the fact that
the distances are measured using the Euclidean norm. The notations are as same as before, modified for the k-median
problem.

Notations: Let ∆(X) denote the 1-median cost of the set of points, i.e., ∆(X) def
= minc∈�d

∑
x∈X ‖x − c‖. A k-

partition of X into disjoint subsets � = {O1, . . . ,Ok} is called a k-clustering of X. We denote the optimal cost-balanced
k-median clustering by �∗ =

{
O∗1, . . . ,O

∗
k

}
. Given a clustering � and a set C = {c1, . . . , ck}, we define costC(�) as

the minimum over all permutation π of C of maxi∈[k]
∑

x∈Oi

∥∥∥x − cπ(i)
∥∥∥. Let OPT denotes the optimal value of the

cost-balanced k-median. For a set of points X and another set of points C, we define φC(X) =
∑

x∈X minc∈C ‖x − c‖.
With a slight abuse of notation, when set C has only one element c, we will use the notation φc(X), instead of φ{c}(X).

For cost-balanced k-median, we no longer have an analogue of the Fact B.1, i.e., for a set of points X, if c∗ denotes
the optimal center w.r.t. the 1-median problem, and c is a point such that φc(X) 6 (1 + ε)φc∗(X), it is possible that
‖c − c∗‖ is large. This in turn implies that there is no analogue of the Lemma B.3. However, instead of the approximate
triangle inequality Fact B.2, we get a triangle inequality in the Euclidean metric.

Lemma C.1 (Theorem 5.4, [KSS10]). Given a random sample (with replacement) R of size 1/ε4 from a set of points
X ∈ �d, there is a procedure construct(R), which outputs a set core(R) of size 2(1/ε)O(1)

such that the following event
happens with probability at least 1/2: there is at least one point c ∈ core(R) such that φc(X) 6 (1 + ε) · ∆(X). The time
taken by the procedure construct(R) is O

(
2(1/ε)O(1)

· d
)
.

Here, we will not sample according to the D2-sampling, but according to the D-sampling defined below.

Definition C.2 (D-sampling). Given a set of points X ⊂ �d and another set of points C ⊂ �d, D-sampling from X w.r.t.
C samples a point x ∈ X with probability φC ({x})

φC (X) . When C = ∅, we pick a point uniformly at random from X.

The algorithm for the cost-balanced k-median is same as that Algorithm 1 and Algorithm 2 except for some minor
changes in both the algorithms. The parameters α and β in Algorithm 4 and Algorithm 5 are large enough constants.

Proof of Theorem 1.7. In this proof, we will mention the changes that are needed from the analysis of the cost-balanced
k-means clustering. The core of the analysis remains the same. The proof follows with some minor modifications of the
Section 5 of [BJK18]. We give the whole proof for completeness sake.

We would like to prove the induction hypothesis P(i). We use the same notation as Section B, and define Case 1
and Case 2 analogously. Consider the Case 1 first. Proof of the Lemma B.4 remains unchanged. The set O′

ī
is define

similarly. Let m∗ be the point for which ∆(O∗
ī
) = φm∗(O∗ī). Define m′ analogously for the set O′

ī
. The statement of the

Lemma B.6 changes as follows:

∆(O′ī) 6
∑
p∈O∗

ī

∥∥∥c(p) − m′
∥∥∥ 6 ∑

p∈O∗
ī

‖c(p) − m∗‖ 6
∑
p∈O∗

ī

(‖c(p) − p‖ + ‖p − m∗‖)

= φCi (O
∗

ī) + ∆(O∗ī) (8)

17

Algorithm 4: Cost-Balanced k-Median Algorithm

Input: Set of points X ⊂ �d, number of clusters k, and an error parameter ε.
Output: A cost-balanced k means clustering �A.

1. Let N = α k
ε6 , M =

β
ε4 .

2. Initialize L to ∅. L will contain a list of candidate means of a clustering, where each
candidate mean is a set of exactly k centers.

3. Repeat 2k times:

- Make a call to (Algorithm 5) Sample-Centers(X, k, ε,L, 0, {}).

4. For each tuple t in L:

- Form a matrix J[k×n], where J(i, j) =
∥∥∥ti − x j

∥∥∥.

- Input t,J to the Jansen & Mastrolilli’s [JM10] algorithm for minimum makespan
scheduling on unrelated machines.

- Maintain the clustering with the minimum cost.

5. Return the minimum cost clustering �A.

Algorithm 5: Sample-Centers Algorithm (Subroutine of Algorithm 5.1, [BJK18])

Input: Set of points X ⊂ �d, number of clusters k, an error parameter ε, a list L of k-tuples, index i , and a set C
of centers.

1. Set N = α k
ε6 , M =

β
ε4 , S ′ = ∅.

2. If (i = k) then add C to the set L.

3. else

(a) S is an i.i.d. sample of N points picked by D-sampling (Definition C.2) w.r.t. C.

(b) S ′ ← S .

(c) For all c ∈ C : S ′ ← S ′ ∪
{
M copies of c

}
.

(d) For all subsets T which is a collection of M points from S ′ (with repetitions allowed)
and for all elements c ∈ core(T):

i. C ← C ∪ {c}.
ii. Sample-Centers(X, k, ε,L, i + 1,C).

18

Proof of Lemma B.7 also changes as follows: let m′′ be as in the statement of this lemma. Then,

φm′′ (O∗ī) =
∑
p∈O∗

ī

∥∥∥p − m′′
∥∥∥

6
∑
p∈O∗

ī

(
‖p − c(p)‖ +

∥∥∥c(p) − m′′
∥∥∥)

= φCi (O
∗

ī) + φm′′ (O′ī)

6 φCi (O
∗

ī) +

(
1 +

ε

8

)
∆(O′ī)

6 2φCi (O
∗

ī) +

(
1 +

ε

8

)
∆(O∗ī)

(
Using (8)

)
6
ε

3
OPT +

(
1 +

ε

8

)
∆(O∗ī)

(
Using Lemma B.4

)
Rest of the arguments remain unchanged (we use Lemma C.1 instead of Lemma B.3). Now we consider the Case 2.

We redefine the parameter R as

R def
=
ε

9
·
φCi (O

∗

ī
)∣∣∣∣O∗ī ∣∣∣∣ .

Define sets O′
ī
, c(On

ī
),O f

ī
as before. Let m∗ be the point for which ∆(O∗

ī
) = φm∗(O∗ī), and m′ be the analogous point

for O′
ī
. Proof of Lemma B.8 can be easily modified to yield the following (we just need to use the triangle inequality

instead of the Fact B.1):

∆(O∗ī) = φm∗ (O∗ī) >
4s
ε

R . (9)

We have the following version of the Lemma B.10:

∆(O′ī) 6 φm∗ (O′ī) =
∑
p∈On

ī

‖c(p) − m∗‖ +
∑
p∈O f

ī

‖p − m∗‖

6
∑
p∈On

ī

(‖p − m∗‖ + ‖c(p) − p‖) +
∑
p∈O f

ī

‖p − m∗‖

6 sR + ∆(On
ī) , (10)

where s denotes
∣∣∣On

ī

∣∣∣. Finally, let m′′ be as in the statement of the Lemma B.11. Then,

φm′′ (O∗ī) =
∑
p∈On

ī

∥∥∥p − m′′
∥∥∥ +

∑
p∈O f

ī

∥∥∥p − m′′
∥∥∥

6
∑
p∈On

ī

(∥∥∥c(p) − m′′
∥∥∥ + ‖c(p) − p‖

)
+

∑
p∈O f

ī

∥∥∥p − m′′
∥∥∥

6 sR + φm′′ (O′ī) 6 sR +

(
1 +

ε

8

)
∆(O′ī)

6 3sR +

(
1 +

ε

8

)
∆(O∗ī)

(
Using (10)

)
6 (1 + ε)∆(O∗ī) .

(
Using (9)

)
Rest of the arguments go through without any changes. �

References
[ABF+18] Sara Ahmadian, Babak Behsaz, Zachary Friggstad, Amin Jorati, Mohammad R. Salavatipour, and Chai-

tanya Swamy, Approximation algorithms for minimum-load k-facility location, ACM Trans. Algorithms
14 (2018), no. 2, 16:1–16:29. 4

19

[ABS10] Marcel R. Ackermann, Johannes Blömer, and Christian Sohler, Clustering for metric and nonmetric
distance measures, ACM Trans. Algorithms 6 (2010), no. 4, 59:1–59:26. 4

[AHL06] Esther M. Arkin, Refael Hassin, and Asaf Levin, Approximations for minimum and min-max vehicle
routing problems, Journal of Algorithms 59 (2006), no. 1, 1 – 18. 4

[ANFSW17] S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward, Better guarantees for k-means and euclidean
k-median by primal-dual algorithms, 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), Oct 2017, pp. 61–72. 3

[AV07] David Arthur and Sergei Vassilvitskii, K-means++: The advantages of careful seeding, Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, Society for
Industrial and Applied Mathematics, 2007, pp. 1027–1035. 3

[BJK18] Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar, Faster algorithms for the constrained k-means
problem, Theory of Computing Systems 62 (2018), no. 1, 93–115. 4, 5, 6, 11, 12, 13, 14, 15, 16, 17, 18

[BPR+17] Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh, An improved
approximation for k-median and positive correlation in budgeted optimization, ACM Trans. Algorithms
13 (2017), no. 2, 23:1–23:31. 3

[CAKM16] V. Cohen-Addad, P. N. Klein, and C. Mathieu, Local search yields approximation schemes for k-means
and k-median in euclidean and minor-free metrics, 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), Oct 2016, pp. 353–364. 3

[CGTS02] Moses Charikar, Sudipto Guha, va Tardos, and David B. Shmoys, A constant-factor approximation
algorithm for the k-median problem, Journal of Computer and System Sciences 65 (2002), no. 1, 129 –
149. 3

[Cha18] Moses Charikar, Personal communication. 5, 10

[Che09] Ke Chen, On coresets for k-median and k-means clustering in metric and euclidean spaces and their
applications, SIAM J. Comput. 39 (2009), no. 3, 923–947. 3, 4, 5

[CS19] Deeparnab Chakrabarty and Chaitanya Swamy, Approximation algorithms for minimum norm and
ordered optimization problems, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing (New York, NY, USA), STOC 2019, ACM, 2019, pp. 126–137. 3

[DLS19] Amit Deshpande, Anand Louis, and Apoorv Singh, On euclidean k-means clustering with alpha-center
proximity, Proceedings of Machine Learning Research (Kamalika Chaudhuri and Masashi Sugiyama,
eds.), Proceedings of Machine Learning Research, vol. 89, PMLR, 16–18 Apr 2019, pp. 2087–2095. 4

[DX15] Hu Ding and Jinhui Xu, A unified framework for clustering constrained data without locality property,
Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia,
PA, USA), SODA ’15, Society for Industrial and Applied Mathematics, 2015, pp. 1471–1490. 4

[EGK+03] G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha, Covering graphs using trees and stars, Ap-
proximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques (Berlin,
Heidelberg) (Sanjeev Arora, Klaus Jansen, José D. P. Rolim, and Amit Sahai, eds.), Springer Berlin
Heidelberg, 2003, pp. 24–35. 4

[FJM08] Aleksei V. Fishkin, Klaus Jansen, and Monaldo Mastrolilli, Grouping techniques for scheduling problems:
Simpler and faster, Algorithmica 51 (2008), no. 2, 183–199. 4

[FMS07] Dan Feldman, Morteza Monemizadeh, and Christian Sohler, A ptas for k-means clustering based on weak
coresets, Proceedings of the Twenty-third Annual Symposium on Computational Geometry, SCG ’07,
ACM, 2007, pp. 11–18. 3, 4, 5

20

[FRS16] Z. Friggstad, M. Rezapour, and M. R. Salavatipour, Local search yields a ptas for k-means in doubling
metrics, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), Oct 2016,
pp. 365–374. 3

[GJ90] Michael R. Garey and David S. Johnson, Computers and intractability; a guide to the theory of np-
completeness, W. H. Freeman & Co., New York, NY, USA, 1990. 4, 10

[HPK05] Sariel Har-Peled and Akash Kushal, Smaller coresets for k-median and k-means clustering, Proceedings
of the Twenty-first Annual Symposium on Computational Geometry, SCG ’05, ACM, 2005, pp. 126–134.
3, 5

[HPM04] Sariel Har-Peled and Soham Mazumdar, On coresets for k-means and k-median clustering, Proceedings of
the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC ’04, ACM, 2004, pp. 291–300.
3, 5

[HS76] Ellis Horowitz and Sartaj Sahni, Exact and approximate algorithms for scheduling nonidentical proces-
sors, J. ACM 23 (1976), no. 2, 317–327. 4

[HS87] Dorit S. Hochbaum and David B. Shmoys, Using dual approximation algorithms for scheduling problems
theoretical and practical results, J. ACM 34 (1987), no. 1, 144–162. 4

[IKI94] Mary Inaba, Naoki Katoh, and Hiroshi Imai, Applications of weighted voronoi diagrams and randomiza-
tion to variance-based k-clustering: (extended abstract), Proceedings of the Tenth Annual Symposium
on Computational Geometry (New York, NY, USA), SCG ’94, ACM, 1994, pp. 332–339. 3, 11

[JKS14] Ragesh Jaiswal, Amit Kumar, and Sandeep Sen, A simple d 2-sampling based ptas for k-means and other
clustering problems, Algorithmica 70 (2014), no. 1, 22–46. 4, 16

[JM10] Klaus Jansen and Monaldo Mastrolilli, Scheduling unrelated parallel machines: linear programming
strikes back, Technische Berichte des Instituts für Informatik der CAU Kiel TR 1004 (2010). 4, 5, 6, 7,
8, 18

[JP01] Klaus Jansen and Lorant Porkolab, Improved approximation schemes for scheduling unrelated parallel
machines, Mathematics of Operations Research 26 (2001), no. 2, 324–338. 4

[JV01] Kamal Jain and Vijay V. Vazirani, Approximation algorithms for metric facility location and k-median
problems using the primal-dual schema and lagrangian relaxation, J. ACM 48 (2001), no. 2, 274–296. 3

[KMN+04] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and
Angela Y. Wu, A local search approximation algorithm for k-means clustering, Computational Geometry
28 (2004), no. 2, 89 – 112, Special Issue on the 18th Annual Symposium on Computational Geometry -
SoCG2002. 3

[KSS04] Amit Kumar, Yogish Sabharwal, and Sandeep Sen, A simple linear time (1+ε)-approximation algorithm
for k-means clustering in any dimensions, 45th Symposium on Foundations of Computer Science (FOCS
2004), 17-19 October 2004, Rome, Italy, Proceedings, 2004, pp. 454–462. 3, 4, 5

[KSS10] Amit Kumar, Yogish Sabharwal, and Sandeep Sen, Linear-time approximation schemes for clustering
problems in any dimensions, J. ACM 57 (2010), no. 2, 5:1–5:32. 5, 17

[L.96] Graham R. L., Bounds for certain multiprocessing anomalies, Bell System Technical Journal 45 (1996),
no. 9, 1563–1581. 4

[LS13] Shi Li and Ola Svensson, Approximating k-median via pseudo-approximation, Proceedings of the Forty-
fifth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC ’13, ACM, 2013,
pp. 901–910. 3

21

[LST90] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos, Approximation algorithms for scheduling unrelated
parallel machines, Mathematical Programming 46 (1990), no. 1, 259–271. 4

[Vaz03] Vijay V. Vazirani, Approximation algorithms, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. 9

[VKKR03] W. Fernandez de la Vega, Marek Karpinski, Claire Kenyon, and Yuval Rabani, Approximation schemes for
clustering problems, Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing,
STOC ’03, ACM, 2003, pp. 50–58. 3, 5

22

	Introduction
	Our Results
	Related Work
	Proof Overview

	(1+)-Approximation for Cost-Balanced k-Means Clustering
	Bi-Criteria Approximation
	Lower Bound
	LP Relaxation and Integrality Gap Instance Due to CharikarPC
	Finding Good Candidate Centers
	(1+)-Approximation for Cost-Balanced k-Median Clustering

