RECITATION - 1
Concentration Ineq.
by: Anomvinem sumb

* Motivation
- Functions of random variables are very useful.

$$
\text { egg. } \begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right) & =x_{1}+\cdots+x_{n}, \\
f\left(x_{1}, \ldots, x_{n}\right) & =\max _{i \in[n]} x_{i}, \quad \text { etc. }
\end{aligned}
$$

- Expectation is relatively easy to compute/ bound
- Concentration ineq. gives conditions under which

$$
f\left(x_{1}, \ldots, x_{n}\right) \approx \mathbb{E}\left[f\left(x_{1}, \ldots, x_{n}\right)\right] .
$$

$$
\mathbb{P}\left[\left|f\left(x_{1}, \ldots, x_{n}\right)-\mathbb{E}\left[f\left(x_{1}, \ldots, x_{n}\right)\right]\right| \geqslant \varepsilon\right] \leqslant \delta .
$$

In AMLDS,

$$
\mathbb{P}[\text { of a bad event }] \leqslant \delta \text {. }
$$

- Generally we are interested in various regimes of $\varepsilon<8$.

Ideally small $\varepsilon \vee$ small δ.

- Small $\varepsilon \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)$ NOT too far away from $\mathbb{E}\left[f\left(x_{1}, \ldots, x_{n}\right)\right]$
- Small $\delta \Rightarrow f\left(x_{1}, \ldots, x_{n}\right)$ is close to $\mathbb{E}[f(x)]$ most of time.
egg. In AMLDS, the smaller the 8 , the union bound can be taken over more bad events.
(for a fixed failure probability)
+ Markov's Ineq.
-Tun: r.v. X, non-negatire valued. For axy $t>0$

$$
\mathbb{P}(x \geqslant t) \leq \frac{\mathbb{E} x}{t}
$$

$p=\operatorname{dist}$. of x
ff: Done in class.

$$
\begin{aligned}
\mathbb{E}[x] & =\sum_{s} \mathbb{P}(x=s) \cdot s \\
& =\sum_{s<t} \mathbb{P}(x=s) \cdot s+\sum_{s \geqslant t} \mathbb{P}(x=s) s \\
& \geqslant 0 \quad t \cdot \sum_{s \geqslant t} \mathbb{P}(x=s) \\
& =t \cdot \mathbb{P}(x \geqslant t)
\end{aligned}
$$

Let x_{1}, \ldots, x_{n} iid dist. of x (think of n as HUGE)

$$
\frac{x_{1}+\cdots+x_{n}}{n}=\mathbb{E} x=\mu
$$

$$
\begin{aligned}
& \frac{\sum x_{i}}{n}=\mathbb{E} x=\mu \\
& x_{i} \geqslant 0, \quad \forall i
\end{aligned}
$$

- What is the maximum number of x_{i} that are $\geqslant t \quad *$ avg. is μ ?
worst $\left\{\begin{array}{l}\text { To compute that, suppose all } x_{i} \text { is }<t \\ \text { are at } 0 . \\ \text { All } x_{i} \text { is } \geqslant t \text { are at } t\end{array}\right.$

$$
\begin{aligned}
& \therefore \frac{0+\left(\# x_{i s}^{\prime} \geqslant t\right) \cdot t}{n}=\mathbb{E} X \rightarrow \text { in } \\
&= \frac{\left(\# x_{i s}^{\prime} \geqslant t\right)}{n} \cdot t=\mathbb{E} X \\
& \therefore \quad \rightarrow \text { in }_{\text {cosers }} \text { worst } \\
& \therefore \frac{\left(\# x_{i s}^{\prime} \geqslant t\right)}{n} \leq \frac{\mathbb{E} X}{t} \rightarrow \text { in vealiny, ve }_{\text {get }} \\
& \Rightarrow \mathbb{P}(x \geqslant t) \leq \frac{\mathbb{E} X}{t} .
\end{aligned}
$$

* What if riv. X takes negative values?

Idea: Apply Marker's, but make your riv. somehow non-negatine.

Chebysher's: Applied Marleor's to $(x-\mathbb{E} X)^{2}$, instead of $x-\mathbb{E} X$
i. .

$$
\begin{aligned}
\mathbb{P}\left((x-\mathbb{E} x)^{2} \geqslant t^{2}\right) & \leq \frac{\mathbb{E}\left((x-\mathbb{E} x)^{2}\right)}{t^{2}} \\
& =\frac{\operatorname{Var}(x)}{t^{2}}
\end{aligned}
$$

$$
? \Rightarrow \mathbb{P}(|x-\mathbb{E} x| \geqslant t) \leq \frac{\operatorname{Var}(x)}{t^{2}}
$$

We are interested in the event:

$$
\mathbb{P}(\underbrace{\{x-\mathbb{E} x \mid \geqslant t\}}_{A})
$$

so, what we did was, wee looked at

$$
\mathbb{P}(\{\underbrace{\left.\left.(x-\mathbb{E} x)^{2} \geqslant t^{2}\right\}\right)}_{B}
$$

We need to show:

$$
\underbrace{\left\{(x-\mathbb{E} x)^{2} \geqslant t^{2}\right\}}_{B} \Rightarrow \underbrace{\{|x-\mathbb{E} x| \geqslant t\}}_{A}
$$

(AA) $B \times$ bound $\mathbb{P}(B)$.

- In general:

Let ϕ be a function s.t. $\phi(x) \geqslant 0, \forall x$

$$
\phi(x) \geqslant \phi(t) \Rightarrow x \geqslant t
$$

then

$$
\mathbb{P}(x \geqslant t) \leq \mathbb{P}(\phi(x) \geqslant \phi(t)) \leqslant \frac{\mathbb{E} \phi(x)}{\phi(t)}
$$

\therefore Choose a non-decceasing nen-negative function.

- What was ϕ in Chebysher's.?
* Goal : Choose ϕ st. $\phi(t)$ is large * $\mathbb{E} \phi(x)$ is easy to bound (4 small).
* Suppose $x \sim \mathcal{N}(0,1)$: Gaussian mite man 0 α variance $\sigma^{2}=1$
Che by sher's:

$$
\mathbb{P}(|x-\mathbb{x}| \geqslant t) \leq \frac{1}{t^{2}}
$$

Actual:

$$
\mathbb{P}(|x-\mathbb{E} x| \geqslant t) \leq 2 e^{-t^{2} / 2} \quad \simeq \int_{t}^{\infty} \frac{1}{\sqrt{2 x}} e^{-\frac{1}{2}} d x
$$

- We see a HUGE difference.

Let's fix error probability δ.
\rightarrow In the Gaussian case, Chebychets in eq. gives:

$$
\begin{aligned}
& P(|x-\mathbb{E} x| \geqslant t) \leq \frac{1}{t^{2}}=\delta \quad \Rightarrow t=\sqrt{\frac{1}{8}} \\
\Rightarrow & \mathbb{P}\left(|x-\mathbb{E} x| \geqslant \sqrt{\frac{1}{8}}\right) \leq 8
\end{aligned}
$$

\rightarrow Actually:

$$
\begin{aligned}
& \text { Actually: } \begin{aligned}
& \mathbb{P}(|X-\mathbb{E} X| \geqslant t) \leq 2 e^{-t^{2} / 2}=8 \\
& \Rightarrow \quad t=\sqrt{\log \left(\frac{2}{8}\right)} \\
& \Rightarrow \mathbb{P}(X-\mathbb{E} X \geqslant \sqrt{\log (1 / 8)}) \leq \delta .
\end{aligned}
\end{aligned}
$$

$\therefore X$ is MUCP closer to its expectation when X is a Gaussian riv.

$$
\text { COMPARE } \sqrt{\log \frac{2}{8}} \text { Vs } \sqrt{\frac{1}{8}} \text {. }
$$

- Maybe a moue clever ϕ could help ns.
- Lets ing $\phi(x)=x^{4}$.

Let $x \sim \operatorname{N}(0,1)$.

$$
\begin{aligned}
& \mathbb{P}(|x-\mathbb{E} x| \geqslant t) \leq \mathbb{P}\left((x-\mathbb{E} x)^{4} \geqslant t^{4}\right) \leq \frac{\mathbb{E}\left((x-\mathbb{E} x)^{4}\right)}{t^{4}} \leq \frac{3^{\sigma^{4}}}{t^{4}} \\
& \quad \Rightarrow \mathbb{P}(|x-\mathbb{E} x| \geqslant t) \leq \frac{3}{t^{4}}=\delta \quad \Rightarrow \quad t=\sqrt[4]{\frac{3}{\delta}} \\
& \Rightarrow \mathbb{P}\left(|x-\mathbb{E} x| \geqslant \sqrt[4]{\frac{3}{8}}\right) \leq \delta .
\end{aligned}
$$

With magic of Wikipedia, we can get rat

$$
\begin{aligned}
& \mathbb{P}(|x-\mathbb{E} x| \geqslant 6 t) \leq \mathbb{P}\left(|x-\mathbb{E} x|^{2 m} \geqslant t^{2 m} \sigma^{m m}\right) \leq \frac{2^{-m} \cdot \frac{(2 m)!}{m!}}{t^{2 m}} \\
& \approx \frac{2^{m} \cdot m^{m}}{t^{2 m}}=\delta \\
& \Rightarrow \quad t^{2}=\frac{2^{m} \cdot m^{m}}{8^{1 / m}} \Rightarrow t=\sqrt{\frac{2 \cdot m}{8^{\frac{1}{m}}}} \\
& \mathbb{P}\left(|x-\mathbb{E} x| \geqslant \sqrt{\frac{2 m}{\delta^{\frac{2}{m}}}}\right) \leq \delta \quad \begin{array}{l}
\text { Alter so much have } \\
\text { work still didn't get } \\
\sqrt{\log \left(\frac{\xi}{\varepsilon}\right)}
\end{array}
\end{aligned}
$$

- Good affempt, but $\mathbb{E}(X-\mathbb{E})^{m}$ is difficult to calculate in general.
- Maybe, I can apply a more clever function. Lets try $\phi(x)=e^{\lambda x} \quad$ (for come λ)

$$
\begin{aligned}
\mathbb{P}((x-\mathbb{E} x) \geqslant t) & \leq \mathbb{P}\left(e^{\lambda(x-\mathbb{E} x)} \geqslant e^{\lambda t}\right) \\
& \leq \frac{\mathbb{E}\left(e^{\lambda(x-\mathbb{E} x)}\right)}{e^{\lambda t}} \\
& =\frac{\exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right)}{e^{\lambda t}}
\end{aligned}
$$

- Recall the goal: Make $\mathbb{E} \phi(x)$ small $\phi(t)$ big.
λ is in our control, so I mill choose the best λ.

$$
\begin{gathered}
\min _{\lambda} \exp \left(\frac{\lambda^{2} \sigma^{2}}{2}-\lambda t\right) \\
=\exp \left(\frac{\lambda^{2} \sigma^{2}}{2}-\lambda t\right) \cdot\left(\frac{2 \lambda \sigma^{2}}{2}-t\right)=0 \\
\therefore \lambda=\frac{t}{\sigma^{2}} \\
\therefore \exp \left(\frac{\lambda^{2} \sigma^{2}}{2}-\lambda t\right)=\exp \left(\frac{t^{2}}{\sigma^{4}} \cdot \frac{\sigma^{2}}{2}-\frac{t t}{\sigma^{2}}\right)=\exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right)
\end{gathered}
$$

\therefore We get

$$
\begin{gathered}
\mathbb{P}(x-\mathbb{E} x>t) \leq \exp \left(-\frac{t}{2 \sigma^{2}}\right)=\delta \\
\therefore \quad t=\sqrt{2 \log \left(\frac{1}{6}\right)} \\
\Rightarrow \mathbb{P}\left(x-\mathbb{E} x>\sqrt{2 \log \frac{1}{6}}\right) \leq \delta
\end{gathered}
$$

\Rightarrow We get the desined bound in ordor.

$$
\phi(x)=\exp (\lambda x) \text {, aresome !!! }
$$

* $\phi(x)=e^{\lambda x}$ is a nice idea for Gaussian. BUT, is $\mathbb{E}[\exp (\lambda x)]$ easy to compute?
\therefore Lets try if jor our far example.
x_{1}, \ldots, x_{n} ind $\operatorname{Bera}(p)$

$$
\mathbb{E} \sum X_{i}=n p, \quad S=\sum X_{i}
$$

- Markov's
$\mathbb{P}(S>t) \leq \frac{n p}{t}=\delta$

$$
t=\frac{p}{\delta} \quad \Rightarrow \quad \mathbb{P}\left(S>\frac{n g}{\delta}\right) \leq \delta .
$$

Chebyshov's.

$$
\begin{aligned}
& \mathbb{P}\left(\left|\sum x_{i}-n p\right| \geqslant t\right) \leqslant \frac{\mathbb{E}\left(\sum x_{i}-n p\right)^{2}}{t^{2}} \\
&=\operatorname{var}\left(x_{1}+\cdots+x_{n}\right)=\sum_{i} \operatorname{var}\left(x_{i}\right) \\
&=n p(1-p) \\
& \therefore \mathbb{P}(|s-p| \geqslant t) \leq \frac{n p(1-p)}{t^{2}}=\delta \Rightarrow t=\sqrt{\frac{n p}{\delta}} \\
& \Rightarrow \mathbb{P}\left(\left|\frac{s}{n}-p\right| \geqslant \sqrt{\frac{n}{\delta}}\right) \leq \delta .
\end{aligned}
$$

Let's try with $\phi(x)=e^{\lambda x}$.

$$
\begin{aligned}
& \mathbb{P}\left(\sum x_{i}-n p \geqslant t\right) \leq \mathbb{P}\left(\exp \left(\lambda\left(\sum x_{i}-n p\right)\right) \geqslant \exp (\lambda t)\right) \\
& \leq \frac{\mathbb{E} \exp \left(\lambda\left(\Sigma x_{i}-n p\right)\right)}{\exp (\lambda t)} \\
& =\frac{\exp (-\lambda n p)}{\exp (\lambda t)} \mathbb{E}\left[\exp \left(\lambda \Sigma x_{i}\right)\right]
\end{aligned}
$$

Let's calculate $E\left[\exp \left(\lambda \sum x_{i}\right)\right]$

$$
\begin{aligned}
& \Rightarrow \mathbb{E}\left[\exp \left(\lambda x_{1}\right) \cdot \exp \left(\lambda x_{2}\right) \cdot \cdots \cdot \exp \left(\lambda x_{n}\right)\right] \\
& =\mathbb{E}\left[\exp \left(\lambda x_{1}\right)\right]^{n} \Rightarrow r o h y ? \\
& \begin{aligned}
\mathbb{E} & \left.\exp \left(\lambda x_{1}\right)\right]= \\
& =p \cdot \exp (\lambda)+(1-p) \exp (0) \\
& p e^{\lambda}+(1-p) .
\end{aligned}
\end{aligned}
$$

\therefore We get that

$$
\mathbb{P}\left(\left|\Sigma x_{i}-n p\right| \geqslant t\right) \leq \frac{\left(p e^{\lambda}+(1-p)\right)^{n} \exp (-\lambda \phi)}{\exp (\lambda t)}
$$

GOAL: Make RHS small

$$
\Rightarrow \min _{\lambda} \frac{\left(p e^{\lambda}+(1-p)\right)^{n} \exp (-\lambda u p)}{\exp (\lambda t)}
$$

$$
\begin{gathered}
n\left(p e^{\lambda}+(1-p)\right)^{n-1} \cdot p e^{\lambda} \exp (-\lambda n p-\lambda t) \\
+\left(p e^{\lambda}+1-p\right)^{n} \exp (-\lambda n p-\lambda t) \cdot(-n p-t) \\
=0
\end{gathered}
$$

\Rightarrow

$$
\begin{aligned}
& p e^{\lambda}=\left(p e^{\lambda}+(1-p) \frac{(n p+t)}{n}\right. \\
& e^{\lambda}\left(1-\frac{n p+t}{n}\right)=\frac{(1-p)}{p}\left(\frac{n p+t}{n}\right)
\end{aligned}
$$

$$
\Rightarrow \lambda=\log \left(\frac{\left(\frac{1-p}{p}\right)\left(\frac{n p+t}{n}\right)}{\left(1-\frac{n p+t}{n}\right)}\right)
$$

Too Difficult to evaluate. Lets ty to simplify.

Chernols calculations

$$
\left(p e^{\lambda}+(1-p)\right)^{n} \exp (-\lambda n p-\lambda t)
$$

Let $t=(1+\varepsilon) n p$.

$$
\begin{aligned}
& \Rightarrow\left(p e^{\lambda}+(1-p)\right)^{n} \exp (-\lambda n p(2+\varepsilon)) \\
& \quad e^{\lambda x} \leq 1+\left(e^{\lambda}-1\right) x, \quad 1+x \leq e^{x}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E} e^{\lambda x_{i}} & \leq \mathbb{E}\left[1+\left(e^{\lambda}-1\right) x_{i}\right] \\
& =1+\left(e^{\lambda}-1\right) p \\
& \leq \exp \left(\left(e^{\lambda}-1\right) p\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \mathbb{P}\left(\Sigma X_{i} \geqslant(1+\varepsilon) \mu\right) \\
& =\quad \frac{\exp \left(\left(e^{\lambda}-1\right) p\right)^{n}}{\exp (\lambda(1+\varepsilon) \mu)} \\
& \therefore \mathbb{P}(X \geqslant(1+\varepsilon) \mu) \leqslant \exp \left(\left(e^{\lambda}-1\right) n p-\lambda(1+\varepsilon) \mu\right) \\
& \min _{\lambda}\left(e^{\lambda}-1\right) n p-\lambda(1+\varepsilon) u p \\
& \Rightarrow e^{\lambda} n p=(1+\varepsilon) \operatorname{sp} \quad \lambda=\log (1+\varepsilon)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathbb{P}(x \geqslant(1+\varepsilon) \mu) \leqslant \\
& \quad \exp (\operatorname{snp}-(1+\varepsilon) \log (1+\varepsilon) n p) \\
& \Rightarrow \mathbb{P}((x-\mu) \geqslant \varepsilon \mu) \leqslant \exp (-\mu(1+\varepsilon) \log (1+\varepsilon)-\varepsilon)) \\
& \therefore \quad \varepsilon \in[0,] \\
& \\
& \mathbb{P}(x \geqslant(1+\varepsilon) \mu) \leqslant \exp \left(-\mu \varepsilon^{2} / 3\right)
\end{aligned}
$$

* Chernofy: Final Bound

$$
\begin{aligned}
& \exp \left(-\mu \frac{\varepsilon^{2}}{3}\right)=\delta \\
& \Rightarrow \quad \frac{\mu \varepsilon^{2}}{3}=\log \left(\frac{1}{8}\right) \Rightarrow \varepsilon=\sqrt{\frac{3 \log \left(\frac{k}{6}\right)}{\mu}} \\
& \mathbb{P}\left(\frac{x-\mu}{\mu} \geqslant \sqrt{\frac{\log \left(\frac{1}{f}\right)}{n p}}\right) \leq \delta\left\{\begin{array}{l}
\text { very } \\
\text { sinimin }
\end{array}\right. \\
& \mathbb{P}\left(\frac{x-\mu}{\mu} \geqslant \sqrt[\sigma^{\prime}]{\frac{2 \log \left(\frac{\xi}{f}\right)}{n}}\right) \leq \delta .
\end{aligned}
$$

+ In general, If we know a good
$\mathbb{E}\left(e^{\lambda x_{i}}\right)$, that suffices.
\Rightarrow If $x_{i} \in[a, b]$. then,
$a \leq 0 \leq b \quad$ nolog

$$
\text { (iv) } \mathbb{E}\left(e^{\lambda x_{i}}\right) \leq \exp \left(\frac{\lambda^{2}(b-a)^{2}}{8}\right)
$$

Subloussian X.V.

$$
\mathbb{E}\left(e^{\lambda x_{i}}\right) \leq \exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right), \forall \lambda
$$

* Hoefflings

$$
\mathbb{P}\left(\Sigma x_{i} \geqslant t\right) \leq \frac{\exp \left(\frac{\lambda^{2}(b-a)^{2} \cdot n}{8}\right)}{\exp (\lambda t)}
$$

$\exp \left(\frac{\lambda^{2}(b-a)^{2} n}{8}-\lambda t\right) \quad$ min wort λ

$$
2 \lambda \frac{(b-a)^{2} n}{8}=t \Rightarrow \lambda=\frac{4 t}{(b-a)^{2} n}
$$

$$
\begin{aligned}
\vec{P}\left(\sum x_{i} \geqslant t\right) & \leq \exp \left(\frac{2 t}{(b-a)^{2} n}-\frac{u t^{2}}{(b-a)^{2} n}\right) \\
& \leq \exp \left(\frac{-2 t^{2}}{(b-a)^{2} \cdot n}\right)
\end{aligned}
$$

McDiarmid's Inequality ${ }^{[1]}$ - Let $f: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \cdots \times \mathcal{X}_{n} \rightarrow \mathbb{R}$ satisfy the bounded differences property with bounds $c_{1}, c_{2}, \ldots, c_{n}$ Consider independent random variables $X_{1}, X_{2}, \ldots, X_{n}$ where $X_{i} \in \mathcal{X}_{i}$ for all i. Then, for any $\varepsilon>0$,

$$
\begin{aligned}
& \mathrm{P}\left(f\left(X_{1}, X_{2}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right] \geq t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right), \\
& \mathrm{P}\left(f\left(X_{1}, X_{2}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right] \leq-t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right),
\end{aligned}
$$

$$
\mathrm{P}\left(\left|f\left(X_{1}, X_{2}, \ldots, X_{n}\right)-\mathbb{E}\left[f\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]\right| \geq \mathrm{t}\right) \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

Bounded difference

$$
\begin{array}{r}
\left|f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots x_{-1}, x_{i,}^{1}, x_{i+1}, \ldots, x_{n}\right)\right| \\
\leq c_{i}, \forall i e[n]
\end{array}
$$

$\mathrm{HW}:$

1. Try Chernojl's proof en your own.
2. Prove hoeefding's lemma, i.e: $(a \leq 0 \leq b)$ If $x_{i} \in[a, b] \times \mathbb{E} x_{i}=0$, then

$$
\mathbb{E}\left[e^{\lambda x_{i}}\right] \leq \exp \left(\frac{\lambda(b-a)^{2}}{8}\right), \forall \lambda \in \mathbb{R}
$$

3. Work out proof of chernoll using Hoed ding's lemma.
4. Google Subgaussian r.r.
