MOMENTS, RANDOM WALKS, AND LIMITS FOR SPECTRUM APPROXIMATION

Yujia Jin (Stanford), Christopher Musco (NYU), Aaron Sidford (Stanford) and Apoorv Vikram Singh (NYU)

Problem

Spectral Density Estimation: $G=(V, E), A=D^{-\frac{1}{2}} G D^{-\frac{1}{2}}$.

Problem: Estimate spectral density to error ε in Wasserstein-1 distance.
Equivalently: Output $\lambda_{1}^{\prime} \geq \cdots \geq \lambda_{n}^{\prime}$, s.t. $\frac{1}{n} \sum_{i}\left|\lambda_{i}-\lambda_{i}^{\prime}\right| \leq \varepsilon$.

Existing results

- [CKSV'18] Given access to a random node and a random neighbour: Estimate spectral density to error $\leq \varepsilon$ in W_{1} distance in time $2^{O(1 / \varepsilon)}$.
- Idea: Estimate first $1 / \varepsilon$ moments to accuracy $2^{O(-1 / \varepsilon)}$, using randomwalks for spectrum approximation, and return a distribution [KV'17].

Moments and Random Walks: j-th moment $m_{j}=\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}^{j}$.

$$
m_{j}=\frac{1}{n} \operatorname{Tr}\left(A^{j}\right)=\frac{1}{n} \sum_{i} \operatorname{Pr}[j \text {-step rw from } i \text { to } i]
$$

Takes $2^{O(1 / \varepsilon)}$-steps of random-walks to estimate the first $1 / \varepsilon$ moments to accuracy $2^{O(-1 / \varepsilon)}$.

- [BKM'22] Estimate spectral density to error $\leq \varepsilon$ in W_{1} distance in time $n / \operatorname{poly}(\varepsilon)$.

Our results

Results of [KV'17] and [CKSV'18] are tight!!

1. \exists distributions on $[-1,1]$ that cannot be approximated to accuracy ε in W_{1} distance even if all of their moments are known to multiplicative accuracy $\left(1 \pm 2^{-\Omega(1 / \varepsilon)}\right)$.
2. No algo can compute an ε-accurate approximation to SDE with constant probability, even when given the transcript of $2^{\Omega(1 / \varepsilon)}$ random walks of length $2^{\Omega(1 / \varepsilon)}$.

Initial idea

Generate 2 distributions such that moments are close and W_{1} distance is far.
$R_{\ell}^{2}:$

$R_{2 \ell}$

- $W_{1}\left(G_{1}^{\prime}, G_{2}\right)>1 / 2 \ell$. Choose $\ell=1 /(2 \varepsilon)$.
- Define a coupling between the random-walks using ϕ and ϕ^{-1}.
- $S: 2^{\Omega(1 / \varepsilon)}$-sized transcript of random-walks in G_{1}^{\prime}, or G_{2}.

$$
\mathrm{d}_{\mathrm{TV}}\left(\mathbb{P}_{G_{1}^{\prime}}(S), \mathbb{P}_{G_{2}}(S)\right) \leq \frac{1}{2}
$$

Adaptive random-walks lower bound

$\frac{1}{2}+\varepsilon$ fraction of 4 -cycles and $\frac{1}{2}-\varepsilon$ fraction of 2 -cycles.

- Need $\Omega\left(1 / \varepsilon^{2}\right)$-random-walk queries to distinguish between the two graphs.

Open Problem 1: Improve lower bound?

- Open Problem 2: Improve upper bound?

References

[BKM'22] Vladimir Braverman, Aditya Krishnan, and Christopher Musco. Sublinear Time Spectral Density Estimation STOC, 2 O 22.
[CKSV'18] David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant. Approximating the Spectrum of a Graph $K D D, 2018$.
[KV'17] Weihao Kong and Gregory Valiant. Spectrum Estimation from Samples. The Annals of Statistics, 2017.

