MOMENTS, RANDOM WALKS, AND LIMITS FOR SPECTRUM APPROXIMATION

Yujia Jin (Stanford), Christopher Musco (NYU), Aaron Sidford (Stanford) and Apoorv Vikram Singh (NYU)

PROBLEM

Spectral Density Estimation: $G = (V, E), A = D^{-\frac{1}{2}}GD^{-\frac{1}{2}}.$

MOMENT LOWER BOUND

Problem: Estimate spectral density to error ε in *Wasserstein-1* distance. **Equivalently:** Output $\lambda'_1 \geq \cdots \geq \lambda'_n$, s.t. $\frac{1}{n} \sum_i |\lambda_i - \lambda'_i| \leq \varepsilon$.

EXISTING RESULTS

- [CKSV'18] Given access to a random node and a random neighbour: Estimate spectral *density* to error $\leq \varepsilon$ in W_1 distance in time $2^{O(1/\varepsilon)}$.
- Idea: Estimate first $1/\varepsilon$ moments to accuracy $2^{O(-1/\varepsilon)}$, using randomwalks for spectrum approximation, and return a distribution [KV'17].
- Moments and Random Walks: j-th moment $m_j = \frac{1}{n} \sum_{i=1}^n \lambda_i^j$.

$$m_j = \frac{1}{n} \operatorname{Tr}(A^j) = \frac{1}{n} \sum_{i} \Pr[j \text{-step rw from } i \text{ to } i].$$

- Takes $2^{O(1/\varepsilon)}$ -steps of random-walks to estimate the first $1/\varepsilon$ moments to accuracy $2^{O(-1/\varepsilon)}$.

- $W_1(G_1, G_2) = 1/(4\ell)$. Choose $\ell = 1/(4\varepsilon)$.

- With probability 1/2, the random walk stays inside the cycle.
- With probability 1/2, the random walk goes to a random node.

$$\implies |m_j(G_1) - m_j(G_2)| = \begin{cases} 0, & \text{for } j < \ell\\ 2^{-\ell+1}, & \text{for } j \ge \ell \end{cases}.$$

RANDOM-WALK LOWER BOUND

- [BKM'22] Estimate spectral density to error $\leq \varepsilon$ in W_1 distance in time $n/\text{poly}(\varepsilon)$.

OUR RESULTS

Results of [KV'17] and [CKSV'18] are *tight*!!

- 1. \exists distributions on [-1, 1] that cannot be approximated to accuracy ε in W_1 distance even if *all* of their moments are known to multiplicative accuracy $(1\pm 2^{-\Omega(1/\varepsilon)}).$
- 2. No algo can compute an ε -accurate approximation to SDE with constant probability, even when given the transcript of $2^{\Omega(1/\varepsilon)}$ random walks of length $2^{\Omega(1/\varepsilon)}$.

INITIAL IDEA

Generate 2 distributions such that moments are close and W_1 distance is far.

- $W_1(G'_1, G_2) > 1/2\ell$. Choose $\ell = 1/(2\varepsilon)$.
- Define a *coupling* between the random-walks using ϕ and ϕ^{-1} .
- $S: 2^{\Omega(1/\varepsilon)}$ -sized transcript of random-walks in G'_1 , or G_2 .

 $d_{\mathrm{TV}}(\mathbb{P}_{G_1'}(S), \mathbb{P}_{G_2}(S)) \le \frac{1}{2}.$

ADAPTIVE RANDOM-WALKS LOWER BOUND

$$\frac{1}{2} + \varepsilon$$
 fraction of 4-cycles and $\frac{1}{2} - \varepsilon$ fraction of 2-cycles.

- First $\ell 1$ moments are the same.
- Difference of ℓ -th moment is $2^{-\ell}$.
- However, difference of $1/\varepsilon^2$ -th moment is $\Omega(\varepsilon)$ -away!

- Need $\Omega(1/\varepsilon^2)$ -random-walk queries to distinguish between the two graphs.
- **Open Problem 1:** Improve lower bound?
- **Open Problem 2:** Improve upper bound?

REFERENCES

- [BKM'22] Vladimir Braverman, Aditya Krishnan, and Christopher Musco. Sublinear Time Spectral Density Estimation STOC, 2022.
- [CKSV'18] David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant. Approximating the Spectrum of a Graph KDD, 2018.
- [KV'17] Weihao Kong and Gregory Valiant. Spectrum Estimation from Samples. *The Annals* of Statistics, 2017.