Second Moment Method

Apoorv Vikram Singh

April 5, 2023

 \underline{Q} For which p = pn does G(n, p) contain a triangle mp 1-0(1)?

Ask the counter:

When does if NOT contain a triangle w.p. 1-o(1)?

FIRST MOMENT

 $X: no. of \Delta s in G(N, p).$

$$\mathbb{E} X = \begin{pmatrix} 1 \\ 3 \end{pmatrix} p^3 \times r^3 p^3$$

Markovs:
$$P(x > 1) \le EX$$

$$P(x>0) \leq n^3 p^3.$$

If $np \rightarrow 0$ then G(n,p) is Δ free $\infty \cdot p \cdot 1 - \circ C1)$.

· WHAT IF >> 1 ?

$$\mathbb{E} \times \to \infty$$
. Then $\mathbb{P}(\times > 0) < \infty$ $\stackrel{\bigcirc \circ}{=}$.

- We want to show for some β , $P(\times > 0) = 1 o(1)$
 - EX can be ∞ but X can be 0 who $1-\frac{1}{N}$ $\chi = 0 \quad \text{why?}$ $\chi = 0 \quad \text{who} \quad 1-\frac{1}{N}$ $\chi = \frac{1}{N^7} \quad \text{who} \quad \frac{1}{N}$

NOW, SECOND MOMENT: Idea: If me can show X is conc. around its mean then me are happy : Concentration . .. Look at higher moments

* Def (Variance): $Vow X = \mathbb{E}[(X - \mathbb{E}X)^{2}] = \mathbb{E}X^{2} - (\mathbb{E}X)^{2}$

Cov(X, y) = E[(X-EX)(Y-EY)]

= E[XY] - E[X] E[Y].

• 6²: Variance, 5≥0: Std. deviation.

Thum:
$$X r.v$$
: $\mathbb{H}XJ = \mathcal{U}$, $Var X = 6^2$. For $\lambda > 0$

$$\mathbb{P}(|X-M| \geq \lambda_0) \leq \frac{1}{\lambda^2}$$

$$\Rightarrow P(x=0) \leq P(|x-u| \geq |u|)$$

$$\leq \frac{Vax \times x}{u^2}$$

$$\frac{1}{2}$$

Thm: If $\mathbb{E} \times > 0$, $\mathbb{E} \times \sim p$. 1-o(1).

BACK TO TRIANGLES:

$$Xijk := Xij Xik Xjk$$

No. of $\Delta' \Delta =: X = \sum_{i \neq j \neq k} Xij Xik Xjk$.

 $X_{ij} = 1 \{ edge(i,j) exists in G(n,p) \}$.

We know $\mathbb{E}X \approx n^3 p^3$ Now compute You X. [INDEPENDENCE NOT NECESSARY]

 $\frac{2}{\tau_{1}\tau_{2}} + (\log n)^{2} \leq (\log n)^{6} \leq n^{3}\beta^{3} + n^{4}\beta^{5} = o(n^{6}\beta^{6})$

.. Van X = 0 (EX) => X>0 whp.

· We say $\frac{1}{N}$ is a threshold for containing $\alpha \Delta$.

i.e. $p > \frac{1}{N}$ then $D \approx p. 1-o(1)$ $p < < \frac{1}{N}$ then wo $D \approx p. 1-o(1)$

b's in G(n,p) approaches Poissen dist mikh

What if $n \rightarrow c$?

Thresholds for fixed Subgraphs

Setup : Variance mith bdd dependencies:

Suppose $X = X_1 + \cdots + X_m$ $X_i = 1 (A_i)$ in $i \neq j$ if $i \neq j$ v (A_i, A_j) are NOT independent. $\Delta^* := \max_{i \neq j} P(A_i \mid A_i).$

" D' considers only pair-mise dépendencies. For more general thing, one consider LLL.

Using the setup:
$$X = x_1 + \cdots + x_m$$

Con $(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j] \le \mathbb{E}[X_i X_j]$

$$= \mathbb{P}[A_i A_i]$$

 $Vor X = \sum_{i,j=1}^{m} COV[X_i, X_j] \leq \sum_{i=1}^{m} P(A_i) + \sum_{i=1}^{m} P(A_i) \geq P(A_i) + \sum_{i=1}^{m} P(A_i) + \sum_{i=1}^{m} P(A_i) \geq P(A_i) + \sum_{i=1}^{m} P(A_i) + \sum_{i=1}^{m} P(A_i) = P(A_i) + \sum_{i=1}^{m} P(A_i) + \sum_{i=1}^{m} P(A_i) = P(A_i) + \sum_{i=1}^{m} P(A_i) + \sum_{i=1}^{m} P(A_i) = P(A_i) = P(A_i) + P(A_i) = P(A_i) = P(A_i) + P(A_i) = P(A_i) =$

= P(Ai). P(Aj Ai).

• Lemma: $\Delta^{r} = o(Ex)$, then X > 0 - $X \sim EX$ who.

 \leq EX + (Ex) Δ^* .

* Threshold for containing Ky:

 $\#X = \begin{pmatrix} n \\ 4 \end{pmatrix} \stackrel{(4)}{=} = n^4 \stackrel{(5)}{=}$ $\implies X = 0 \text{ only}.$

23,70

Suppose pss h^{-1/3}. As = exent = S is a t-clique im G(n,p).

As = event = 5 15 a r-clique im G(h, p)

Fix S. As $\sim A_{c'}$ if $\frac{|S \cap C'| \gg 2}{|S|}$

S' share exactly 2 vertices:
$$\binom{4}{2} \cdot \binom{n-4}{2} = O(n^2)$$
.
IP (As' | As) = p^5 .

*#
$$S'$$
 shape exactly 3. rectices: $\binom{4}{3}$ $\binom{n-4}{1}$ = $\binom{0}{n}$.

P(As' | As) = p^3 .

FIRST MOMENT DOESN'T GIVE RIGHT THRESHOLD

 $H = \sum_{x \in X_1 \neq x} P^x = \sum_{x \in X_2 \neq x} P^x = \sum_{x \in X_3 \neq x}$

.. $\# p >> n^{-0.7}$ then $\mathbb{E} \times \to \infty$.

But:
$$K_{4} \subseteq H$$
, $V = n^{-\frac{3}{3}} = n^{-0.6}$ is the threshold.

$$n^{-0.7} \ll p \ll n^{-0.6} \Rightarrow X = 0 \approx h.p.$$

The right threshold is $p: n^{\frac{2}{3}}$.

· We need to look at the "densest" subgraph of H.

f: edge-vertex ratio of graph R:

max edge-vertex ration of subgraph of H

$$m(H) := \max_{H \subseteq H} p(H).$$

```
* Thun: (Bollobás ' 1981)

Fix a grafish H. Then p= hourshold

Jou containing H as a subgrafis.
```

<u>PROBLEMS:</u>

- **Q1.** Isolated vertices. Let $p_n = (\log n + c_n)/n$.
 - (a) Show that, as $n \to \infty$,

$$\mathbb{P}(G(n, p_n) \text{ has no isolated vertices}) \to \begin{cases} 0 & \text{if } c_n \to -\infty, \\ 1 & \text{if } c_n \to \infty. \end{cases}$$

(b) Suppose $c_n \to c \in \mathbb{R}$, compute, with proof, the limit of LHS above as $n \to \infty$, by following the approach in \mathbb{C}_3 .

- **C3.** Poisson limit. Let X be the number of triangles in G(n, c/n) for some fixed c > 0.
 - (a) For every nonnegative integer k, determine the limit of $\mathbb{E}\binom{X}{k}$ as $n \to \infty$.
 - (b) Let $Y \sim \text{Binomial}(n, \lambda/n)$ for some fixed $\lambda > 0$. For every nonnegative integer k, determine the limit of $\mathbb{E}\binom{Y}{k}$ as $n \to \infty$, and show that it agrees with the limit in (a) for some $\lambda = \lambda(c)$.
 - We know that Y converges to the Poisson distribution with mean λ . Also, the Poisson distribution is determined by its moments.
 - (c) Compute, for fixed every nonnegative integer t, the limit of $\mathbb{P}(X=t)$ as $n\to\infty$. (In particular, this gives the limit probability that G(n,c/n) contains a triangle, i.e., $\lim_{n\to\infty} \mathbb{P}(X>0)$. This limit increases from 0 to 1 continuously when c ranges from 0 to $+\infty$, thereby showing that the property of containing a triangle has a coarse threshold.)

· No isolated restices:

P(G(n,p) has no isolated vertices)

$$\begin{cases}
0 & \text{if } C_{N} \rightarrow -\infty \\
1 & \text{if } C_{N} \rightarrow \infty
\end{cases}$$

$$\mathbb{P}(G(n,p) \text{ is connected}) \rightarrow \begin{cases} 0 & \text{if } Cn \rightarrow -\infty \\ 1-e^{-c} & \text{if } Cn \rightarrow C \end{cases}$$