Second Moment Method

Apoorv Vikram Singh

April 5, 2023

Q: For which $p=p_{n}$ does $G(n, p)$ contain a triangle sop. 1-o(1)?

Ask the counter:
When does if NOT contain a triangle sop 1-o(1)?

FIRST MOMENT
X: no. of $\Delta^{\prime} s$ in $G(n, p)$.

$$
\mathbb{E} X=\binom{n}{3} p^{\left(\frac{3}{2}\right)}=n^{3} p^{3}
$$

Markovs: $\quad \mathbb{P}(x \geqslant 1) \leq \mathbb{E} X$

$$
\therefore \mathbb{P}(x>0) \leq n^{3} p^{3}
$$

If $n p \rightarrow 0$ then $G(n, p)$ is s free $n \cdot p .1-0(1)$.

- WHAT IF $\quad p \gg \frac{1}{n}$?

$$
\begin{align*}
& \mathbb{E} x \rightarrow \infty . \quad \text { Then } \\
& \mathbb{P}(x>0)<\infty
\end{align*}
$$

- We want to show for some p,

$$
\mathbb{P}(x>0)=1-0(1)
$$

- $\mathbb{E X}$ can be ∞ but X can be 0 whip.
- why?

$$
\begin{aligned}
& x_{n}=0 \text { wp. } 1-\frac{1}{n} \\
& n^{7} \text { wp. } \frac{1}{n}
\end{aligned}
$$

NOW, SECOND MOMENT:
Idea: If me can show x is conc around its mean then we ore happy
\therefore Concentration. \therefore Look at higher moment

* Def (variance):

$$
\begin{aligned}
\operatorname{Var} x & =\mathbb{E}\left[(x-\mathbb{E} x)^{2}\right]=\mathbb{E} x^{2}-(\mathbb{E} x)^{2} \\
\operatorname{Cov}(x, y) & =\mathbb{E}[(x-\mathbb{E} x)(y-\mathbb{E} y)] \\
& =\mathbb{E}[x y]-\mathbb{E}[x] \mathbb{E}[y] .
\end{aligned}
$$

- σ^{2} : variance, $\sigma \geqslant 0$: sf. deviation.
* Them: X riv: $\mathbb{E}[x]=\mu, \quad \operatorname{var} x=\sigma^{2}$. For $\lambda>0$ $\mathbb{P}(|x-\mu| \geqslant \lambda \sigma) \leq \frac{1}{\lambda^{2}}$.

$$
\begin{aligned}
\Rightarrow \quad \mathbb{P}(x=0) & \leqslant \mathbb{P}(|x-\mu| \geqslant|\mu|) \\
& \leq \frac{\operatorname{Var} x}{\mu^{2}}
\end{aligned}
$$

\therefore If $\mathbb{E} x>0, \quad \operatorname{Var} x=0(\mathbb{E} X)^{2}$, then $x>0$, $\sim X \sim E X$ wop. $1-0(1)$.

Than: If $\mathbb{E} x>0, \quad \operatorname{Var} x=o(\mathbb{E} x)^{2}$, then $x>0$, $\checkmark X \sim E X$ now. $1-0(1)$.

BACK TO TRIANGLES:

$$
\begin{aligned}
& x_{i j}=\mathbb{1}\{\text { edge }(i, j) \text { exists in } G(n, p)\} . \\
& x_{i j k}:=x_{i j} x_{i k} x_{j k} \\
& \text { No. of } \Delta^{\prime} s=x=\sum_{i<j<k} x_{i j} x_{i k} x_{j k} .
\end{aligned}
$$

We know $\mathbb{E X} \simeq n^{3} p^{3}$
Now compute $\operatorname{Vav} X$.
[INDEPENDENT NOT NELESSSRIT]

If $T_{1} \propto T_{2}$ are each 3-verlex subsets, then:

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{T_{1}}, X_{T_{2}}\right)=\mathbb{E}\left[X_{T_{1}} X_{T_{2}}\right]-\mathbb{E}\left[X_{T_{1}}\right] \cdot \mathbb{E}\left[X_{T_{2}}\right] \\
&=p^{e\left(T_{1} \cup T_{2}\right)}-p^{e\left(T_{1}\right)+e\left(T_{2}\right)} \\
&=\left\{\begin{array}{cc}
0, & \mid 7 \\
p^{5}-T_{1} \cap T_{2} \mid \leq 1 \\
p^{3}-p^{6}, & \left|T_{1} \cap T_{T_{2}}\right| \\
T_{1}=T_{2}
\end{array}\right. \\
& n^{3} p^{3}+n^{4} p^{5} \rightarrow 0 \\
& n^{6} p^{6}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \operatorname{Var}(x)= & \sum_{T_{1} T_{2}} \operatorname{cov}\left(x_{T_{1}}, x_{\pi}\right)=\binom{n}{3}\left(p^{3}-p^{6}\right)+\binom{n}{2}\binom{n-2}{2}\left(p^{5}-p^{6}\right) \\
& \left(\log n^{3}+\left(\log n^{2}\right)^{2} \leq(\operatorname{lom})^{6}\right) \approx n^{3} p^{3}+n^{4} p^{5}=o\left(n^{6} p^{6}\right)
\end{aligned}
$$

$\therefore \operatorname{Var} X=O(\mathbb{E} X)^{2} \Rightarrow X>0$ whee. as $n p \rightarrow \infty$

- We say $\frac{1}{n}$ is a threshold for containing $a \leq$.
ie. $p \gg \frac{1}{n}$ then Δ wop. $1-\circ(1)$
$p \ll \frac{1}{n} \quad$ then no Δ wop. $1-o(1)$

What if $n p \rightarrow c$?
\# Δ^{\prime} s in $G(n, p)$ approaches Poisson dist with cont. mean.

Thresholds for fixed subgrapers

Setup variance with bold dependencies:
suppose $x=x_{1}+\cdots+x_{m}, \quad x_{i}=\mathbb{1}\left(\overrightarrow{A_{i}}\right)$ event.
iv if $i \neq j \vee\left(A_{i}, A_{j}\right)$ are NoT independent.

$$
\Delta^{*}:=\max _{i} \sum_{j j j v i} \mathbb{P}\left(A_{j} \mid A_{i}\right) .
$$

" Δ^{2} considers only pair-nise dependencies. For wore general thing, me consider LLL.

Using the setup: $\quad x=x_{1}+\cdots+x_{m}$

$$
\begin{aligned}
\operatorname{Cov}\left(x_{i}, x_{j}\right) & =\mathbb{E}\left[x_{i} x_{j}\right]-\mathbb{E}\left[x_{i}\right] \mathbb{E}\left[x_{j}\right] \leq \mathbb{E}\left[x_{i} x_{j}\right] \\
& =\mathbb{P}\left[A_{i} A_{j}\right] \\
& =\mathbb{P}\left(A_{i}\right) \cdot \mathbb{P}\left(A_{j} \mid A_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\therefore \operatorname{Var} X=\sum_{i, i=1}^{m} \operatorname{cov}\left[X_{i}, X_{j}\right] \leq \sum_{i=1}^{m} \mathbb{P}\left(A_{i}\right)+\sum_{i=1}^{m} \mathbb{P}\left(A_{i}\right) \sum_{j: j=i n} \mathbb{P} A_{j} \mid A_{i}\right) \\
& \leq \mathbb{E} X+(\mathbb{E} X) \Delta^{\pi} .
\end{aligned}
$$

- Lemma:

If $\mathbb{E} x \rightarrow \infty, \Delta^{*}=0(\mathbb{E} x)$, then $x>0, x \sim \mathbb{E} x$ soup.

* Threshold for containing K_{4} :

Suppose poss $n^{-2 / 3}$.
As:= event: S is areligre in $G(n, p)$.

$$
\text { Fix s. } \quad \frac{A_{s} \sim A_{s^{\prime}}}{\bigotimes_{s^{\prime}}^{\prime} \|_{0}^{s}} \text { if } \frac{|\sin | \geqslant 2}{\mathbb{Q}}
$$

\# S^{\prime} shove exactly 2 vertices: $\binom{4}{2} \cdot\binom{n-4}{2}=O\left(n^{2}\right)$.

$$
\because \mathbb{P}\left(A_{s^{\prime}} \mid A_{s}\right)=p^{5} .
$$

\# S^{\prime} shane exactly 3 . varices: $\binom{4}{3} \cdot\binom{n-4}{1}=O(n)$.

$$
\because \mathbb{P}\left(A_{s^{\prime}} \mid A_{s}\right)=p^{3} .
$$

\therefore summing ores all S^{\prime}

FIRST MOMENT DOESN'T GIVE RIGHT THRESHED

$$
\mathbb{E} X_{k}=n^{5} p^{7}
$$

$\mathbb{E} X=0(1)$, then $X=0$ sup.

$$
\text { ie. } \begin{aligned}
& p \ll n^{-5 / 7} \\
&= n^{-0.11}
\end{aligned}
$$

\therefore If $p \gg n^{-0.7}$ then $\mathbb{E} X \rightarrow \infty$.
But: $K_{4} \subseteq H . v p=n^{-2 / 3}=n^{-0.6}$ is the threshold.

$$
\Rightarrow \quad n^{-0.7} \ll p \ll n^{-0.6} \Rightarrow \quad x=0 \text { win. } p .
$$

The right threshold is $p=n^{-2 / 3}$.
We need to look at he "densest" subgrobh of 1 .

* Def: edge-vertex ratio of graph x :

$$
P(H):=\frac{e_{H}}{v_{H}}
$$

max edge-vertex ratio of subgraph of h

$$
m(H):=\max _{H \leq H} P\left(H^{\prime}\right) .
$$

* Thur: (Bollobás 1981)

Fix a graph H. Then $p==^{-1} m(n)$ is a threshold for containing H as a subgraph.

PROBLEMS:

Q1. Isolated vertices. Let $p_{n}=\left(\log n+c_{n}\right) / n$.
(a) Show that, as $n \rightarrow \infty$,

$$
\mathbb{P}\left(G\left(n, p_{n}\right) \text { has no isolated vertices }\right) \rightarrow \begin{cases}0 & \text { if } c_{n} \rightarrow-\infty \\ 1 & \text { if } c_{n} \rightarrow \infty\end{cases}
$$

(b) Suppose $c_{n} \rightarrow c \in \mathbb{R}$, compute, with proof, the limit of LHS above as $n \rightarrow \infty$, by following the approach in C3.

C3. Poisson limit. Let X be the number of triangles in $G(n, c / n)$ for some fixed $c>0$.
(a) For every nonnegative integer k, determine the limit of $\mathbb{E}\binom{X}{k}$ as $n \rightarrow \infty$.
(b) Let $Y \sim \operatorname{Binomial}(n, \lambda / n)$ for some fixed $\lambda>0$. For every nonnegative integer k, determine the limit of $\mathbb{E}\binom{Y}{k}$ as $n \rightarrow \infty$, and show that it agrees with the limit in (a) for some $\lambda=\lambda(c)$.
We know that Y converges to the Poisson distribution with mean λ. Also, the Poisson distribution is determined by its moments.
(c) Compute, for fixed every nonnegative integer t, the limit of $\mathbb{P}(X=t)$ as $n \rightarrow \infty$. (In particular, this gives the limit probability that $G(n, c / n)$ contains a triangle, i.e., $\lim _{n \rightarrow \infty} \mathbb{P}(X>0)$. This limit increases from 0 to 1 continuously when c ranges from 0 to $+\infty$, thereby showing that the property of containing a triangle has a coarse threshold.)

- No isolated vertices:

$$
p=\frac{\log n+c_{n}}{n}
$$

$\mathbb{P}(G(n, p)$ has no isolated vertices)

$$
\begin{aligned}
& d \\
& \left\{\begin{array}{lll}
0 & \text { if } & c_{n} \rightarrow-\infty \\
1-e^{e^{-c}} & \text { if } & c_{n} \rightarrow c \\
1 & \text { if } & c_{n} \rightarrow \infty
\end{array}\right.
\end{aligned}
$$

- Connectivity

$$
p=\frac{\log n+c_{n}}{n}
$$

$$
\mathbb{P}(G(n, p) \text { is connected }) \rightarrow\left\{\begin{array}{cll}
0 & \text { if } c_{n} \rightarrow-\infty \\
1-e^{e^{-c}} & \text { if } c_{n} \rightarrow c^{\prime} \\
1 & \text { if } c_{n} \rightarrow \infty
\end{array} .\right.
$$

