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Recall MaxCut

- Given: G =(V,E).
- Goal: Find S C V, such that ‘E(S,?)’ is maximized



Approximation Algorithm for MaxCut

. Algorithm: Return a random cut.

. In expectation: Algorithm cuts half the edges.
. MaxCut < |E].

. Therefore, it is a %-approximation algorithm.
5-app g



Can we improve the 1/2-approximation?

- Question: Is there an LP-based algorithm that achieves
(0.5 + €)-approximation algorithm?

~ Answer: There does not exist a 2" size LP that gets
(0.5 + f(9))-approximation [CLRS16].

. [Goemans-Williamson, 1994] Gave a 0.878-approximation
algorithm for MaxCut (based on SDP).



Goal Today

- G=(V,E), and let Opt(G) = MaxCut(G).
- fo(x) = %Z(i’j)eE(x,- — x;)?, for x € {—1,1}".
- maxye(_113 fo(x) = MaxCut(G).

Theorem (0.878 Theorem)

For all G,
Opt(G)

0.878
has a degree-2 SoS certificate.

— fe(x),



To prove the theorem, we will prove a “rounding” theorem.

Theorem (Rounding Theorem)

Let pu be a degree-2 pseudo-distribution on {—1,1}". Then, there
is an actual distribution 1’ such that

E fg(x) > 0.878 E, fg(x) .
w

» Rounding: Takes pseudo-distribution to actual distribution.



Rounding Theorem =—> 0.878 Theorem

Proof.
Suppose 00;2(7(&;) — fe(x) is not SoSy, then,
. 3 a degree-2 p.d. u such that £, (%?;(7(;) — f(.;(x)) < 0.

Opt(G)
0.878 -

. Rounding Theorem = 3 a distribution y/, such that,

. Rearranging: INEMfG >

E fc > 0.878 &, fc(x) > Opt(G).
17

. By fc > Opt(G), contradiction.



Interpreting Rounding Theorem

. Suppose we have a p.d. pu, and under this p.d.,
EHfG(X) = OptSoSg'

. We are interested in finding such cuts, or, if there are such
cuts.

. Find distribution 1/, such that E,/ fg(x) is as large as possible.
. We won't be able to prove it is equal, but we can prove

E fg(x) > 0.878 Optg,g, -
I

. — p’ will be efficient = algorithm to approximate
MaxCut.



Proving Rounding Theorem

Ideally:
. Given p.d. p, find distribution u' over {—1,1}", such that

El:f;(l, x)®2 = IE,,,(l, x)®2 )

This is called: Generalized Moment Problem.

. Not possible, otherwise we would have solved MaxCut exactly.



But, we can do it over R”

Lemma (Gaussian Sampling)

For any degree-2 p.d. 1, there exists an actual distribution over R"
with same first and second moments.

Proof.
For any p.d. u of degree-2,

. First Moment: I~Eux.

. Second Moment: , xx .

. Sample: gNN(IE”x,INEuxxT).



Wlog IEMX =0

. If u was an actual distribution, then x ~ pu, and output
-+x or —x uniformly.

. Second Moment E, xx remains unchanged.
. Mean = 0.

Look at the p.d. with mean 0 and second moment EMXXT. The
value of E,f; remains unchanged.

1
fG(x):Z Z (xi XJ)2
(iJ)eE
- Z 2x,xJ
(u)GE
~ 1
= E,fe(x) = 2 > (2 2E,xx))



Efficient Algorithmic Process

Recall: gNN(O,INEMxxT) .

. i — g, such that INEMxxT =FEgg'.
. Issue: g does not have entries in {£1}.
Efficient Algorithmic Process,
1. Take g ~ N <O,I~Euxx—r).
2. %; = sign(g;), which gives that x € {—1,1}".
Call 1/ the distribution on X.



Claim (Rounding Theorem)
E”/ f(;(X) > 0.878 Euf(;(x).

Lemma (Sheppard’s Lemma)

P [sign(g;i) # sign(gj)] > W E(gi — gj)27

for p =E,xix; = E gg;.
Remark(s): Comparing LHS and RHS of claim with lemma.

. IE fo(x) = Z E Z P [sign(g;) # sign(gj)] -
I,_[)EEM (l,j)EE

. 1 -

Eufe(x) = 2 Z £ (xi — Z E(g gj)2

(iJ)eE (w)eE



Sheppard’'s Lemma = Rounding Theorem

Proof.

. 2arccos(p) _

min —————= > , min at p = —0.69) .
pe[—ll,l] m(l—p) — W (mi P )
=0.878...
This implies
A 1x
n E(X/ - Xj)2 > aGWZEu(Xi - XJ)2 )
1 o 1 ~
2 Z E,(Xi - XJ)2 > aGWZ Z E,(xi — XJ)2
(ij)ee” (if)eE



Proving Sheppard’s Lemma

Proof )
We have Gaussians g, gj, such that E gijg; = E, x;x; = p, and
Eg? = IE x? =1.
Procedure to generate such Gaussian vectors:

. Let v, w € S such that (v, w) = p.

. Take h ~ N(0, ).

. 8i = (h,v), g = (h,w), this has same joint-distribution as

8i, 8-

We are interested in:

PP [sign(gj) # sign(g;)] = P [sign(g;) # sign(g;)] -



Proof Cont...

A

P [sign(g;) # sign(gj)] = P [sign(&i) # sign(g))]

= P[sign((h, v)) 7 sign((h, w))]
B arccos( )

And the other quantity

1. 2 1 2 1 A A \2 1
2Bu(xi —x)" =, E(gi — g)" = ; E(&i — )" = 5(1 - p).

— Plisn(e) # sizn(g)] > 2o Eg )



MaxCut Approximation Done.



Can we do better?

1. Can we do better with degree-2 SoS7: No.

2. Can we improve it with degree-4, degree-6, ..., degree-logn
SoS? Open.

How likely?
Unique Games Conjecture —> (agw + ¢)-approx to MaxCut
is NP-Hard Ve > 0 [Har+10, Lecture 9].
- Corollary: Suppose Opt(G) > (1 — ) |E|, then Gaussian
rounding gives E,/ fg(x) > (1 - O(ﬂ)) |E|.
3. Is this the most optimal rounding? No (RPR? rounding does
better in some regimes of ¢ [FLO1]).




Integrality Gaps?

What's the largest ¢ for which degree-2 SoS certificate exists for

Opt(G
Opt(C) _ fo(x)?

Ans: ¢ = 0.878.. is optimal.

Fact
Cn: Cycle on n vertices, n odd.
MaxCut(C,) = Opt(Cp) = (1 - 1) |E|.

Theorem
There is a p.d. | of degree-2 such that

B fe (x) = (1 _ 0(,712)) |

Choose n = %, then Opt(C,) = (1 — &) |E|, and
Optgos,(Cn) = 1 — O(6?) |E].
= Corollary for small § is tight up to constant factors.



Cycle = "Discretized” 2-dimn Sphere

= “Discretized” high-dimn Sphere

[Feige and Schechtman [FS02]] Proved agy is optimal.



Proof Sketch of Theorem

MaxCut = max,ec(_1.1}" x"Lgx.
Relaxation = max”XH:ﬁxTLGx = n||Lgl|,-
» How to construct such a degree-2 p.d.?
- Choose a distribution on x that are in the “largest
eigenspace” of Lg.
. We just need £, (1,x)(1,x)" =0, E,x? =1, E,1 = 1.
1. Idea: Amax(Lg) =1 — O(1/n?). It is not Boolean because

maxcut is (1 — O(1/n))|E|. Top eigenspace is 2-dimensional
with vectors vy, vo.

2. set M = E#xxT = v1v1T + v2v2T = 0.
3. Moreover, vi vlT + v2v2T has diagonal entries 1.

4. Therefore, this is a valid pseudo-expectation.



References |

[FLO1]

[FS02]

[Har-+10]

[CLRS16]

Uriel Feige and Michael Langberg. ‘“The RPR2 Rounding
Technique for Semidefinite Programs'. In: Automata,
Languages and Programming. Ed. by Fernando Orejas,
Paul G. Spirakis, and Jan van Leeuwen. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 213-224 (cit. on

p. 18).

Uriel Feige and Gideon Schechtman. ‘On the Optimality of
the Random Hyperplane Rounding Technique for Max Cut’.
In: Random Struct. Algorithms 20.3 (2002), 403-440

(cit. on p. 20).

Prahladh Harsha et al. Limits of Approximation Algorithms:
PCPs and Unique Games (DIMACS Tutorial Lecture Notes).
2010. arXiv: 1002.3864 [cs.CC] (cit. on p. 18).

Siu On Chan, James R. Lee, Prasad Raghavendra, and
David Steurer. ‘Approximate Constraint Satisfaction
Requires Large LP Relaxations'. In: 63.4 (2016). arXiv:
1309.0563 [cs.CC] (cit. on p. 4).


https://arxiv.org/abs/1002.3864
https://arxiv.org/abs/1309.0563

	MaxCut
	References

