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Recall MaxCut

- Given: G = (V ,E ).
- Goal: Find S ⊆ V , such that

∣∣∣E (S, S)
∣∣∣ is maximized



Approximation Algorithm for MaxCut

. Algorithm: Return a random cut.

. In expectation: Algorithm cuts half the edges.

. MaxCut ≤ |E |.

. Therefore, it is a 1
2 -approximation algorithm.



Can we improve the 1/2-approximation?

- Question: Is there an LP-based algorithm that achieves
(0.5 + ε)-approximation algorithm?

- Answer: There does not exist a 2nδ size LP that gets
(0.5 + f (δ))-approximation [CLRS16].

. [Goemans-Williamson, 1994] Gave a 0.878-approximation
algorithm for MaxCut (based on SDP).



Goal Today

- G = (V ,E ), and let Opt(G) = MaxCut(G).
- fG(x) = 1

4
∑

(i ,j)∈E (xi − xj)2, for x ∈ {−1, 1}n.
- maxx∈{−1,1}n fG(x) = MaxCut(G).

Theorem (0.878 Theorem)
For all G,

Opt(G)
0.878 − fG(x) ,

has a degree-2 SoS certificate.



To prove the theorem, we will prove a “rounding” theorem.

Theorem (Rounding Theorem)
Let µ be a degree-2 pseudo-distribution on {−1, 1}n. Then, there
is an actual distribution µ′ such that

E
µ′

fG(x) ≥ 0.878 ẼµfG(x) .

I Rounding: Takes pseudo-distribution to actual distribution.



Rounding Theorem =⇒ 0.878 Theorem

Proof.
Suppose Opt(G)

0.878 − fG(x) is not SoS2, then,

. ∃ a degree-2 p.d. µ such that Ẽµ
(

Opt(G)
0.878 − fG(x)

)
< 0.

. Rearranging: ẼµfG > Opt(G)
0.878 .

. Rounding Theorem =⇒ ∃ a distribution µ′, such that,

E
µ′

fG ≥ 0.878 ẼµfG(x) > Opt(G) .

. Eµ′ fG > Opt(G), contradiction.



Interpreting Rounding Theorem

. Suppose we have a p.d. µ, and under this p.d.,
ẼµfG(x) = OptSoS2 .

. We are interested in finding such cuts, or, if there are such
cuts.

. Find distribution µ′, such that Eµ′ fG(x) is as large as possible.

. We won’t be able to prove it is equal, but we can prove

E
µ′

fG(x) ≥ 0.878 OptSoS2 .

. µ→ µ′ will be efficient =⇒ algorithm to approximate
MaxCut.



Proving Rounding Theorem

Ideally:
. Given p.d. µ, find distribution µ′ over {−1, 1}n, such that

E
µ′

(1, x)⊗2 = Ẽµ(1, x)⊗2 .

This is called: Generalized Moment Problem.
. Not possible, otherwise we would have solved MaxCut exactly.



But, we can do it over Rn

Lemma (Gaussian Sampling)
For any degree-2 p.d. µ, there exists an actual distribution over Rn

with same first and second moments.

Proof.
For any p.d. µ of degree-2,

Ẽµxx> < 0 .

. First Moment: Ẽµx.

. Second Moment: Ẽµxx>.

. Sample: g ∼ N
(
Ẽµx, Ẽµxx>

)
.



Wlog Ẽµx = 0

. If µ was an actual distribution, then x ∼ µ, and output
+x or −x uniformly.

. Second Moment Ẽµxx> remains unchanged.

. Mean = 0.

Look at the p.d. with mean 0 and second moment Ẽµxx>. The
value of ẼµfG remains unchanged.

fG(x) = 1
4
∑

(i ,j)∈E
(xi − xj)2

= 1
4
∑

(i ,j)∈E
(2− 2xixj)

=⇒ ẼµfG(x) = 1
4
∑

(i ,j)∈E
(2− 2Ẽµxixj) .



Efficient Algorithmic Process

Recall: g ∼ N
(
0, Ẽµxx>

)
.

. µ→ g , such that Ẽµxx> = E gg>.

. Issue: g does not have entries in {±1}.
Efficient Algorithmic Process,

1. Take g ∼ N
(
0, Ẽµxx>

)
.

2. x̂i = sign(gi ), which gives that x̂ ∈ {−1, 1}n.
Call µ′ the distribution on x̂.



Claim (Rounding Theorem)
Eµ′ fG(x) ≥ 0.878 ẼµfG(x).

Lemma (Sheppard’s Lemma)

P [sign(gi ) 6= sign(gj)] ≥ 2 arccos(ρ)
π(1− ρ) E(gi − gj)2 ,

for ρ = Ẽµxixj = E gigj .
Remark(s): Comparing LHS and RHS of claim with lemma.

· E
µ′

fG(x) = 1
4
∑

(i ,j)∈E
E
µ′

(x̂i − x̂j)2 =
∑

(i ,j)∈E
P [sign(gi ) 6= sign(gj)] .

· ẼµfG(x) = 1
4
∑

(i ,j)∈E
Ẽµ(xi − xj)2 = 1

4
∑

(i ,j)∈E
E(gi − gj)2 .



Sheppard’s Lemma =⇒ Rounding Theorem

Proof.

min
ρ∈[−1,1]

2 arccos(ρ)
π(1− ρ) ≥ αGW︸ ︷︷ ︸

=0.878...

, ( min at ρ = −0.69) .

This implies

1
4 E
µ′

(x̂i − x̂j)2 ≥ αGW
1
4 Ẽµ(xi − xj)2 ,

1
4
∑

(i ,j)∈E
E
µ′

(x̂i − x̂j)2 ≥ αGW
1
4
∑

(i ,j)∈E
Ẽµ(xi − xj)2 .



Proving Sheppard’s Lemma

Proof
We have Gaussians gi , gj , such that E gigj = Ẽµxixj = ρ, and
E g2

i = Ẽµx2
i = 1.

Procedure to generate such Gaussian vectors:
. Let v ,w ∈ S(2−1) such that 〈v ,w〉 = ρ.
. Take h ∼ N (0, I2).
. ĝi = 〈h, v〉, ĝj = 〈h,w〉, this has same joint-distribution as

gi , gj .
We are interested in:

P [sign(gi ) 6= sign(gj)] = P [sign(ĝi ) 6= sign(ĝj)] .



Proof Cont...

P [sign(gi ) 6= sign(gj)] = P [sign(ĝi ) 6= sign(ĝj)]
= P [sign(〈h, v〉) 6= sign(〈h,w〉)]

= arccos(ρ)
π

.

And the other quantity

1
4 Ẽµ(xi − xj)2 = 1

4 E(gi − gj)2 = 1
4 E(ĝi − ĝj)2 = 1

2(1− ρ).

=⇒ P [sign(gi ) 6= sign(gj)] ≥ 2 arccos(ρ)
π(1− ρ) E(gi − gj)2 .



MaxCut Approximation Done.



Can we do better?

1. Can we do better with degree-2 SoS?: No.
2. Can we improve it with degree-4, degree-6, . . . , degree-log n

SoS? Open.
How likely?

Unique Games Conjecture =⇒ (αGW + ε)-approx to MaxCut
is NP-Hard ∀ε > 0 [Har+10, Lecture 9].

- Corollary: Suppose Opt(G) ≥ (1− δ) |E |, then Gaussian
rounding gives Eµ′ fG(x) ≥

(
1−O

(√
δ
))
|E |.

3. Is this the most optimal rounding? No (RPR2 rounding does
better in some regimes of δ [FL01]).



Integrality Gaps?

What’s the largest c for which degree-2 SoS certificate exists for
Opt(G)

c − fG(x)?
Ans: c = 0.878.. is optimal.

Fact
Cn: Cycle on n vertices, n odd.
MaxCut(Cn) = Opt(Cn) =

(
1− 1

n

)
|E |.

Theorem
There is a p.d. µ of degree-2 such that

ẼµfCn (x) =
(

1−O
( 1

n2

))
|E | .

Choose n = 1
δ , then Opt(Cn) = (1− δ) |E |, and

OptSoS2(Cn) ≥ 1−O
(
δ2) |E |.

=⇒ Corollary for small δ is tight up to constant factors.



Cycle = “Discretized” 2-dimn Sphere
...
= “Discretized” high-dimn Sphere

[Feige and Schechtman [FS02]] Proved αGW is optimal.



Proof Sketch of Theorem

MaxCut = maxx∈{−1,1}n x>LGx.
Relaxation = max‖x‖=√n x>LGx = n ‖LG‖2.
I How to construct such a degree-2 p.d.?
- Choose a distribution on x that are in the “largest

eigenspace” of LG .
. We just need Ẽµ(1, x)(1, x)> < 0, Ẽµx2

i = 1, Ẽµ1 = 1.

1. Idea: λmax(LG) = 1−O
(
1/n2). It is not Boolean because

maxcut is (1−O(1/n)) |E |. Top eigenspace is 2-dimensional
with vectors v1, v2.

2. set M = Ẽµxx> = v1v>1 + v2v>2 < 0.
3. Moreover, v1v>1 + v2v>2 has diagonal entries 1.
4. Therefore, this is a valid pseudo-expectation.
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