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Goal: Approximating Graph Expansion.



Setting

Consider the d-regular graph G = (V ,E ). Let |V | = n.
I Throughout we will consider a d-regular graph (easier to work

with).
I Recall the cut polynomial fG(x) = 1

4
∑

(i ,j)∈E (xi − xj)2.
I Maxcut: maxx∈{−1,1}n fG(x) - 0.878-Approx Algo.
I MinCut: minx∈{−1,1}n fG(x) - 1-Approx Algo.

Today: We will look at “minimum-normalized-cut”: Called
expansion.



Normalized Cut

Definition (Normalized Size of a Cut)

φG(S) def=

∣∣∣E (S, S)
∣∣∣

d
n |S| (n − |S|)

.

Compare the size of the cut defined by S to the size of the cut
defined by S in a random-graph of same average-degree.

Definition (Expansion of the Graph)

ΦG
def= min

S⊂V , 0<|S|<n
φG(S) .

Intuition: Start a random walk from a random vertex in S. What
is the chance that it goes out of S in one step ≡ φ(S). Therefore,
ΦG calculates how “well-connected” the graph is.



Today’s Goal

Given a d-regular graph G = (V ,E ), compute or approximate ΦG .

Remark(s)

1. Computing ΦG is NP-Hard.
2. Chawla et al. [Cha+05]: UGC =⇒ no constant-factor approx

for ΦG .
3. Random Cut S:

E
S
φG(S) ≥ 1

2 ,

gives no constant approx because this is a minimization
problem.



Expansion in Polynomial Form
Recall

φG(S) =

∣∣∣E (S, S)
∣∣∣

d
n |S| (n − |S|)

, write this in polynomial form.

∣∣∣E (S,S)
∣∣∣

d
n |S| (n − |S|)

= fG(x)
d
n

1
4
∑

i ,j(xi − xj)2 , (S = {i |xi = 1}) .

Suppose that,

min
x∈{−1,1}n

P(x)
Q(x) = c =⇒ P(x)− cQ(x) ≥ 0 .

Therefore, in our case, find a SoS certificate for the largest c, of
the polynomial

fG(x)− c d
n ·

1
4
∑
i ,j

(xi − xj)2 .



Cheeger’s Inequality

Theorem (Alon and Milman [AM85] in SoS form)
For all d-regular graph G = (V ,E ), |V | = n,

fG(x)− c d
4n
∑
i ,j

(xi − xj)2,

has a degree-2 SoS certificate for c = 1
2 Φ2

G (proof of the theorem
shows that one can find a cut of size O

(√
ΦG
)
).

Further, given any degree p.d. µ of degree ≥ 2 such that

ẼµfG(x)− c Ẽµ
d
4n
∑
i ,j

(xi − xj)2≤0,

we can find a set S with expansion φG(S) = O(
√

c).



Remarks about the Cheeger’s Inequality

Remark(s)

1. The above polynomial is non-negative for c ≤ ΦG .
2. p.d. “pretends” there’s a cut of size c, and we can find a cut

of
√

c.
3. c < 1 and hence

√
c > c.

4. When φG is large, then we have a nice result. But when
φG = o(1), then this is a bad algorithm.

5. If a graph is an expander (ΦG = const.), then degree-2 SoS
gives you a certificate that is an expander (losing only
constant factor).

6. Therefore, aim is to improve on this result when ΦG is small
(e.g., φG � 1

log n ).



Results for Small ΦG

Theorem (Leighton and Rao [LR99] LP Based Algorithm)
One can find in polynomial time a set S such that

φG(S) = O(log n) ΦG .

Breakthrough Result:

Theorem (Arora, Rao, and Vazirani [ARV09])
One can find in polynomial time a set S such that

φG(S) = O
(√

log n
)

ΦG .



Stating [ARV09] in SoS form

Theorem (Degree-4 SoS for [ARV09])
Let G = (V ,E ) be a d-regular graph, and let |V | = n. Then there
is a degree-4 SoS certificate for

fG(x)−
(

ΦG
O
(√

log n
)) d

n
∑
i ,j

(xi − xj)2.

Further, for any degree-4 p.d. µ on {−1, 1}n, we can find S ⊆ V ,
such that

φG(S) ≤ O
(√

log n
) ẼµfG(x)
Ẽµ d

n
∑

i ,j(xi − xj)2 .



Proof

By the time we finish the proof, we will have proved
1. Poly-time algorithm for MinCut.
2. O(log n)-approximation of [LR99].
3. And finally, O

(√
log n

)
-approximation of [ARV09].

Proof
. 1

4 Ẽµ(xi − xj)2 ≡ “pseudo-probability” that i and j are
separated.

. Moreover, 0 ≤ 1
4 Ẽµ(xi − xj)2 ≤ 1.

. D(i , j) def= 1
4 Ẽµ(xi − xj)2.



Triangle Inequality

Claim (SoS Triangle Inequality)
For any degree-4 p.d., the following is true:

Ẽµ(xi − xj)2 ≤ Ẽµ(xi − xk)2 + Ẽµ(xk − xj)2

≡
D(i , j) ≤ D(i , k) + D(k, j) .

Proof Sketch.
. Open up the brackets, and show that the polynomial is always

non-negative using the fact that xi , xj , xk ∈ {−1, 1}n.
. Since it is non-negative of degree-2, can represent it as a

degree-4 SoS.



Goal: Proof of MinCut

Proof
Let µ be a p.d. of degree-4 such that 1

4 Ẽµ(xs1 − xsn )2 = 1, for
some vertices s1, sn.

1. Label the vertices 1, 2, . . . , n.
2. Map vertex j to point D(1, j).

3. Choose t ∼ Unif([0, 1]).
4. Output S = {i | D(1, j) ≤ t}.

Q: What’s the chance that any edge (i , j) is cut?
A: |D(1, j)− D(1, i)| ≤ D(i , j), (by triangle ineq.)

. D(i , j) ≡ chance of a “pseudo-cut”.

Therefore,
E
S

fG(S) ≤ ẼµfG(x) .



Generalizing This Procedure

Let A ⊂ V and define D(i ,A) = minj∈A D(i , j).

Claim
The same analysis works if we start the line-embedding with
D(j ,A): The distance from set A.

Proof.
Probability that edge (i , j) is cut:

|D(i ,A)− D(j ,A)| ≤ D(i , j).

Note: We need to argue that the cut is non-trivial.



Analysing this Procedure for Expansion
Goal: Find a distribution µ′ on x ′ ∈ {−1, 1}n so that

Eµ′ fG(x ′)
d
4n
∑

i ,j Eµ′(x ′i − x ′j )2 , is small.

We will reason that it is small by comparing it with

m̃ def= ẼµfG(x)
d
4n
∑

i ,j Ẽµ(xi − xj)2 , which is just a number .

Suppose ∃ distribution µ′ on x ′ ∈ {−1, 1}n

Eµ′ fG (x′)
d
4n
∑

i,j Eµ′ (x′
i − x′

j )2
≤

m̃
∆

=⇒ E
µ′

fG (x′)−
( m̃

∆

) d
4n

∑
i,j

E
µ′

(x′
i − x′

j )2 ≤ 0. (1)

This implies that the normalized cut is smaller than
(

m̃
∆

)
, and the

aim is to make this quantity as small as possible. ((1) suffices because
there are only polynomial number of possible values of expansion.)



Therefore, we need to simultaneously make the numerator small
and denominator large. We can handle the numerator (MinCut),
but for denominator we need to ensure that the size of the cut is
“balanced”.

E
µ′

fG(x ′) ≤ ẼµfG(x) (Easy: MinCut)
∑
i ,j

E
µ′

(x ′i − x ′j )2 ≥
( 1

∆

)∑
i ,j

Ẽµ(xi − xj)2 (Hard: balanced-cut)



Idea: Looking at MinCut Closely

Definition (Large ∆-Separated Sets)
A,B are large ∆-separated sets if for all i ∈ A, j ∈ B, D(i , j) ≥ ∆,
and |A| · |B| = Ω

(
n2).

Idea:
1. Suppose we have A,B as the large ∆-separated sets.
2. Do the “line-embedding” according to A.
3. Any threshold t we choose will put at least all vertices of A is

one set.
4. If ∆ is large-enough, then A will be on one side of cut and B

on the other side ≡ non-trivial cut (“balanced-cut”).



Idea Cont...

Proposition
If we round according to the line-embedding D(j ,A), then∑

i ,j
E
µ′

(x ′i − x ′j )2 ≥
∑

i∈A,j∈B
D(j ,A) ≥ ∆ |A| · |B| = Ω

(
∆n2

)
, (2)

E
µ′

fG(x ′) ≤ ẼµfG(x) . (3)

Note:∑
i ,j

Ẽµ(xi−xj)2 ≤ n2 =⇒
∑
i ,j

E
µ′

(x ′i−x ′j )2 ≥ Ω(∆)
∑
i ,j

Ẽµ(xi−xj)2 .

ΦG ≤
Eµ′ fG (x′)

d
4n
∑

i,j Eµ′ (x′
i − x′

j )2
≤
( 1

∆

) ẼµfG (x)
d
4n
∑

i,j Ẽµ(xi − xj )2
≤
( 1

∆

)
ΦG .

∴ (2) and (3) =⇒ rounding with approx-ratio 1
Θ(∆) .



Towards large ∆-separated sets

Theorem (Global Structure Theorem [ARV09])
Let G = (V ,E ) be a d-regular graph, µ a degree-4 p.d., and
D(i , j) = 1

4 Ẽµ(xi − xj)2 satisfies triangle inequality. Suppose

1
n2

∑
i ,j

D(i , j) ≥ 0.1, (Extra Hypothesis: least expanding set is large) .

Then there exists sets A,B (can be found in polynomial time) such
that |A| · |B| ≥ Ω(n2), and

∀i ∈ A, j ∈ B, D(i , j) ≥ Ω
( 1√

log n

)
︸ ︷︷ ︸

=∆

.



Proof of a Weaker Structure Theorem (∆ = 1/Θ(log n))

Assume the extra-hypothesis: 1
n2
∑

i ,j D(i , j) ≥ 0.1.
Goal: Constructing ∆-separated large sets-

1. Let g ∼ N (0, Ẽµxx>), (Note: E g2
i = 1, E gi = 0).

2. Note D(i , j) = Ẽµ(xi − xj)2 = E(gi − gj)2. So maybe
thresholding on gi , gj works.

3. Let A0 = {i | gi ≤ −1}, and B0 = {j | gj ≥ 1}.

Claim
E
∣∣A0∣∣ · ∣∣B0∣∣ ≥ Ω(n2) .

Proof.
P {gi ≤ −1 and gj ≥ 1} ≥ c · D(i , j) =⇒ E

∣∣A0∣∣ · ∣∣B0∣∣ ≥ Ω(n2)
(by extra-hypothesis).



Constructing ∆-Separated Set
Proof of Leighton and Rao [LR99].

- Note that A0 and B0 are random sets. We want to
understand how D(i , j) behaves for i ∈ A0, j ∈ B0

(extra-hypothesis implies D(i , j) well-spread on average).
- What’s the failure chance (sets are not ∆ separated):
∃i ∈ A0, j ∈ B0, s.t., E(gi − gj)2 ≤ ∆, (recall gj − gi ≥ 2).

. Since (gj − gi ) is also a Gaussian, we get that
P {gj − gi ≥ 2} ≤ exp (−c/∆). For small ∆ this is tiny.

- We want to find what’s the probability that no such (i , j)
exists. Using union bound,

P
{

A0 & B0 are ∆-Separated
}
≥ 1− n2 exp

(−c
∆

)
.

- Choosing ∆� 1
log n , makes A0,B0 are large ∆-Separated sets.



Improving Upon Leighton and Rao [LR99]
Notation: Let H be a short-edge graph.

E (H) =
{

(i , j) ∈ [n]2
∣∣∣ D(i , j) ≤ ∆

}
.

Goal: Find Ω(n) size sets A,B that is a vertex separator in H.
Idea: Remove pairs that are “close-by” but go across A0,B0.
Algorithm:

1. Take A0,B0 as before.
2. Find a maximal matching M greedily in E (H) ∩ A0 × B0, i.e.,

fix the traversal order independently of g , and traverse on the
edges. If it goes across A0,B0, then remove the edge and
corresponding vertices in A0,B0, and continue.

3. Output A = A0 \ V (M), B = B0 \ V (M).
Obervation(s):

1. A,B are ∆-Separated sets.
2. A,B are vertex-separator in H.



To Prove: A, B are large

Remarks:
1. M is a random quantity (∵ A0,B0 dependent on g).
2. M has “directed” edges, i.e., if (i , j) ∈ M, then gj − gi ≥ 2.
3. Since g has 0-mean, we get that g ,−g have the same

distribution.
. If we instead worked with −g then A0,B0 would be

interchanged, which implies

P {vertex i has an incoming edge in M} =
P {vertex i has an outgoing edge in M}

4. If |A| · |B| = o(n2), then E |M| ≥ Ω(n): only way we fail, is if
we remove too many edges from A0,B0.



To Prove: A, B are large

We will show that E |M| ≥ Ω(n) is a rare event.
Intuition:

1. We already saw that for each (i , j) ∈ M, E(gi − gj)2 ≤ ∆,
and gj − gi ≥ 2: and probability of this happening was “rare”.

2. One way many of these rare-events can occur together is if
suppose one of the gj ≥ O

(√
log n

)
. Then constant fraction

of edges attached to it will gave small values of gi . Therefore,
many rare-events happen due to one vertex being huge.

3. But, since we took a matching M, a single vertex contributes
only one edge.

4. Therefore, in some sense, these give us “less” correlated set of
rare-events, all occurring together, the probability of which
should be small.

We will now formally analyze the expected size of the matching.



A, B large =⇒ [ARV09]

Lemma (Large Matching ≡ Large Expected Max of Gaussians)

Ω(1)
∆ ·

(E |M|
n

)3
≤ E max

i ,j∈[n]
gj − gi ≤ O

(√
log n

)
.

Proof of: Lemma =⇒ [ARV09].
The lemma above implies that E |M| ≤ n

(
∆
√

log n
)1/3. This gives

us that if we want to ensure that |A| · |B| = Ω(n2), choosing
∆� 1√

log n
suffices.



Towards Proof of Lemma

Notation:

. Hk(i) def= vertices within k steps from i in H.

. Y k
i

def= maxj∈Hk (i) gj − gi .
(very) Rough Idea:

. (i , j) ∈ M =⇒ gj − gi ≥ 2.

. Form a chain Hk(i)
(chain of length k).

. Hope that constant fraction of edges in chain belong to the
matching M.

. Then these long paths could imply that the maximum is large,
e.g., (gj − gi ), (gj′ − gi ′), (gj′′ − gi ′′), · · · ≥ 2



Formalizing the Rough Idea

Definition

Φ(k) =
n∑

i=1
EY k

i .

Notice,
Φ(k)

n ≤ E max
i ,j∈[n]

gj − gi .

Claim (Potential Functions Grows with k)

Φ(k + 1)− Φ(k) ≥ E |M| − O(n) max
i∈[n],

j∈Hk+1(i)

(
E(gj − gi )2

)1/2
.



Claim =⇒ Lemma

Proof

max
i∈[n],j∈Hk+1(i)

E(gj − gi )2 ≤ (k + 1)∆ .

Therefore, RHS of the Claim gives that

Φ(k + 1)− Φ(k) ≥ E |M| − O(n)
√

k∆ .

Let k0 = c
(
E|M|

n

)2
/∆. We choose this k0 because,

√
k0∆ = c ′ E |M|. Therefore ∀k ≤ k0,

Φ(k + 1)− Φ(k) ≥ 1
2 E |M| .

(we will use this inductively).



Proof Cont...
Then,

max
i ,j∈[n]

gj − gi ≥
Φ(k0)

n

≥ 1
2k0

E |M|
n (Inductively)

= Θ(1)
∆

(E |M|
n

)3
.

All we are left with is proof of the Claim:

Φ(k + 1)− Φ(k) ≥ E |M| − O(n)
√

k∆ .



Proof of Claim

Proof
. Y k+1

i ≥ Y k
j + gj − gi , for all (i , j) ∈ E (H).

. If (i , j) ∈ M, then gj − gi ≥ 2 =⇒ Y k+1
i ≥ Y k

j + 2 (huge
matching will help us increase it).

. Let N ∈ [n]× [n] be an arbitrary matching of vertices not in
M.

. ∀(i , j) ∈ N, 1
2 Y k+1

i + 1
2 Y k+1

j ≥ 1
2 Y k

i + 1
2 Y k

j .
. ∀(i , j) ∈ M, Y k+1

i ≥ Y k
j + 2.



Proof of Claim

Proof Cont...
. Summing up:

∑n
i=1 Y k+1

i · Li ≥
∑n

j=1 Y k
j · Rj + 2 |M|, where

Li/(Ri )
def=


1, if i has outgoing/ (incoming) edge in M
0, if i has incoming/ (outgoing) edge in M
1
2 , if M is unmatched.

. Summing up over edges in M and we gather +2 for every
matched edge.

. Recall i has equal chance of an incoming and outgoing edge
in M, therefore,

E Li = ERi = 1/2.



Proof of Claim

Proof Cont...
. We now want to take expectation of∑n

i=1 Y k+1
i · Li ≥

∑n
j=1 Y k

j · Rj + 2 |M|. We shall use the
following:∣∣∣E [Y k+1

i · Li
]
− EY k+1

i · E Li
∣∣∣ =

∣∣∣E [(Y k+1
i − EY k+1

i )(Li − E Li )
]∣∣∣

≤
√
E(Y k+1

i − EY k+1
i )2

·
√
E(Li − E Li )2

=
√

Var
(

Y k+1
i

)
·
√

Var (Li )︸ ︷︷ ︸
≤1

.



Proof of Claim

Proof Cont...
. Using max of Gaussians result, we get

Var
(

Y k+1
i

)
≤ O(1) max

j∈Hk+1
i

Var (gj − gi ) = O(1) max
j∈Hk+1

i

E(gi−gj)2 .

. So,∣∣∣EY k+1
i · Li − EY k+1

i · E Li
∣∣∣ ≤ O(1)

√
max

j∈Hk+1(i)
E(gj − gi )2 , &,

∣∣∣EY k
j · Rj − EY k

j · ERj
∣∣∣ ≤ O(1)

√
max

i∈Hk (j)
E(gi − gj)2 .

. Using this, we can now replace expectation of product by
product of expectations.



Proof of Claim

Proof Cont...
. Recall:

∑n
i=1 Y k+1

i · Li ≥
∑n

j=1 Y k
j · Rj + 2 |M|.

. Now, taking expectations (product of expectation), we get∑n
i=1 EY k+1

i · E Li = 1
2 Φ(k + 1),∑n

j=1 EY k
j · ERj = 1

2 Φ(k).
. Therefore, we get

Φ(k + 1)− Φ(k) ≥ 4E |M| − O(n) · max
i∈[n],

j∈Hk+1(i)

√
E(gj − gi )2 .



To get rid of the extra-hypothesis, refer to Page 9-10 of Barak and
Steurer’s Notes.

https://www.sumofsquares.org/public/lec-arv.pdf
https://www.sumofsquares.org/public/lec-arv.pdf
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