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Abstract

We study the problem of approximately recovering a probability distribution given noisy
measurements of its Chebyshev polynomial moments. We sharpen prior work, proving that
accurate recovery in the Wasserstein distance is possible with more noise than previously known.

As a main application, our result yields a simple “linear query” algorithm for constructing
a differentially private synthetic data distribution with Wasserstein-1 error Õ(1/n) based on a
dataset of n points in [−1, 1]. This bound is optimal up to log factors and matches a recent
breakthrough of Boedihardjo, Strohmer, and Vershynin [Probab. Theory. Rel., 2024], which
uses a more complex “superregular random walk” method to beat an O(1/

√
n) accuracy barrier

inherent to earlier approaches.
We illustrate a second application of our new moment-based recovery bound in numerical

linear algebra: by improving an approach of Braverman, Krishnan, and Musco [STOC 2022], our
result yields a faster algorithm for estimating the spectral density of a symmetric matrix up to
small error in the Wasserstein distance.



1 Introduction
The problem of recovering a probability distribution (or its parameters) by “matching” noisy
estimates of the distribution’s moments goes back over 100 years to the work of Chebyshev and
Pearson [Pea94; Pea36; Fis11]. Moment matching continues to find a wide variety of applications,
both in traditional statistical problems [KMV10; MV10; RSS14; WY19; WY20; FL23] and beyond.
For example, moment matching is now widely used for solving eigenvalue estimation problems in
numerical linear algebra and computational chemistry [WWAF06; CKSV18; CTU21; Che22].

One powerful and general result on moment matching for distributions with bounded support is that
the method directly leads to approximations with small error in the Wasserstein-1 distance (a.k.a.
earthmover’s distance). Concretely, given a distribution p supported on [−1, 1],1 any distribution q
for which Ex∼p[xi] = Ex∼q[xi] for i = 1, . . . , k satisfies W1(p, q) = O(1/k), where W1 denotes the
Wasserstein-1 distance [KV17; CTU21]. I.e., to compute an ϵ-accurate approximation to p, it suffices
to compute p’s first O(1/ϵ) moments and to return any distribution q with the same moments.

Unfortunately, the above result is highly sensitive to noise, so is difficult to apply in the typical
setting where, instead of p’s exact moments, we only have access to estimates of the moments (e.g.,
computed from a sample). In particular, it can be shown that the accuracy of these estimates needs
to be proportional to 1/2k if we want to approximate p up to Wasserstein error O(1/k) [JMSS23]. In
other words, distribution approximation is poorly conditioned with respect to the standard moments.

1.1 Chebyshev moment matching

One way of avoiding the poor conditioning of moment matching is to move from the standard
moments, Ex∼p[xi], to a better conditioned set of “generalized” moments. Specifically, significant
prior work [WWAF06; WJF+16; BKM22] leverages Chebyshev moments of the form Ex∼p[Ti(x)],
where Ti is the ith Cheybshev polynomial of the first kind, defined as:

T0(x) = 1 T1(x) = x Ti(x) = 2xTi−1(x) − Ti−2(x), for i ≥ 2.

The Cheybshev moments are known to be less noise sensitive than the standard moments: instead
of exponentially small error, Õ(1/k) additive error2 in computing p’s first k Chebyshev moments
suffices to find a distribution that is O(1/k) close to p in Wasserstein distance (see, e.g., Lemma 3.1
in [BKM22]). This fact has been leveraged to obtain efficient algorithms for distribution estimation
in a variety of settings. For example, Chebyshev moment matching leads to O(n2/poly(ϵ)) time
algorithms for estimating the eigenvalue distribution (i.e., the spectral density) of an n×n symmetric
matrix A to error ϵ∥A∥2 in the Wasserstein distance [BKM22].

Cheybshev moment matching has also been leveraged for differentially private synthetic data
generation. In this setting, p is the uniform distribution over a dataset x1, . . . , xn. The goal is to
find some q that approximates p, but in a differentially private way, which informally means that q
cannot reveal too much information about any one data point, xj [DNRRV09; RLP+20; MMSM22].
Such a q can be used to generate private synthetic data that is representative of the original data.
One approach to solving this problem is to compute p’s Chebyshev moments, and then add noise,
which is known to ensure privacy [DR14]. Then, one can find a distribution q that matches the
noised moments. It has been proven that, for a dataset of size n, this approach yields a differentially
private distribution q that is Õ(1/n1/3) close to p in Wasserstein distance [WJF+16].

1The result easily extends to p supported on any finite interval by shifting and scaling the distribution to [−1, 1].
For a general interval [a, b], matching k moments yields error O(|a − b|/k) in Wasserstein-1 distance.

2Throughout, we let Õ(z) denote O(z logc(z)) for constant c.
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1.2 Our contributions

Despite the success of Chebyshev moment matching, including for the applications discussed above,
there is room for improvement. For example, for private distribution estimation, alternative methods
can achieve nearly-optimal error Õ(1/n) in Wasserstein distance for a dataset of size n [BSV24],
improving on the Õ(1/n1/3) bound known for moment matching. For eigenvalue estimation, existing
moment matching methods obtain an optimal quadratic dependence on the matrix dimension n,
but a suboptimal polynomial dependence on the accuracy parameter, ϵ [BKM22].

The main contribution of this work is to resolve these gaps by proving a sharper bound on the
accuracy with which the Chebyshev moments need to be approximated to recover a distribution to
high accuracy in the Wasserstein distance. Formally, we prove the following:

Theorem 1. Let p, q be distributions supported on [−1, 1]. For any positive integer k, if the
distributions’ first k Chebyshev moments satisfy

k∑
j=1

1
j2

(
E

x∼p
Tj(x) − E

x∼q
Tj(x)

)2
≤ Γ2, (1)

then, for an absolute constant c,3

W1(p, q) ≤ c

k
+ Γ. (2)

As a special case, (1) holds if for all j ∈ {1, . . . , k},∣∣∣∣ Ex∼p
Tj(x) − E

x∼q
Tj(x)

∣∣∣∣ ≤ Γ ·
√

j

1 + log k
.4 (3)

Theorem 1 characterizes the Chebyshev moment error required for a distribution q to approximate
p in Wasserstein distance. The main requirement, (1), involves a weighted ℓ2 norm with weights
1/j2, which reflects the diminishing importance of higher moments on the Wasserstein distance.
Referring to (3), we obtain a bound of W1(p, q) ≤ O(1/k) as long as q’s jth moment differs from p’s
by Õ(

√
j/k). In contrast, prior work requires error Õ(1/k) for all of the first k moments to ensure

the same Wasserstein distance bound (Lemma 3.1, [BKM22]).

As a corollary of Theorem 1, we obtain the following algorithmic result:

Corollary 2. Let p be a distribution supported on [−1, 1]. Given estimates m̂1, . . . , m̂k satisfying∑k
j=1

1
j2 (Ex∼p Tj(x) − m̂j)2 ≤ Γ2, Algorithm 1 returns a distribution q with W1(p, q) ≤ c′ ·

(
1
k + Γ

)
for a fixed constant c′ in poly(k) time.

Algorithm 1 simply solves a linearly-constrained least-squares regression problem to find a distribution
q supported on a sufficiently fine grid whose moments are nearly as close to those of p as m̂1, . . . , m̂k.
We then obtain Corollary 2 by applying Theorem 1 to bound W1(p, q). The linear constraints ensure
that q is positive and sums to one (i.e, that it is a valid distribution). This problem is easily solved
using off-the-shelf software: in our experiments, we use a solver from MOSEK [DB16; MOS19].

Like prior work, our proof of Theorem 1 (given in Section 3) relies on tools from polynomial
approximation theory. In particular, we leverage a constructive version of Jackson’s theorem on

3Concretely, we prove a bound of 36
k

+ Γ, although we believe the constants can be improved, at least to 2π
k

+ Γ,
and possibly further. See Section 3 for more discussion.

4Throughout, we let log k denote the natural logarithm of k, i.e., the logarithm with base e.
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polynomial approximation of Lipschitz functions via “damped Chebyshev expansions” [Jac12].
Lipschitz functions are closely related to approximation in Wasserstein distance through the
Kantorovich-Rubinstein duality: W1(p, q) = max1−Lip f

∫ 1
−1 f(x)(p(x) − q(x))dx. In contrast to prior

work, we couple Jackson’s theorem with a tight “global” characterization of the coefficient decay
in the Chebyshev expansion of a Lipschitz function. In particular, we prove that any 1-Lipschitz
function f with Chebyshev expansion f =

∑∞
j=0 cjTj has coefficients that satisfy

∑∞
j=1 j2c2

j = O(1).
Prior work only leveraged the well-known “local” decay property, that the jth coefficient has
magnitude bounded by O(1/j) [Tre19]. This property is implied by our bound, but much weaker.

1.3 Applications

We highlight two concrete applications of Theorem 1.

Differentially Private Synthetic Data. Privacy-enhancing technologies seek to protect in-
dividuals’ data without preventing learning from the data. For theoretical guarantees of privacy,
differential privacy [DR14] has become the industry standard, having been used in massive data
products like the US Census, and included as a core tenet of the recent Executive Order on the Safe,
Secure, and Trustworthy Development and Use of Artificial Intelligence [Bid23; Abo18; AAS+19].

Concretely, we are interested in the ubiquitous notion of approximate differential privacy:

Definition 3 (Approximate Differential Privacy). A randomized algorithm A is (ϵ, δ)-differentially
private if, for all pairs of neighboring datasets X, X ′, and all subsets B of possible outputs:

P[A(X) ∈ B] ≤ eϵ · P[A(X ′) ∈ B] + δ .

In our setting, a dataset X is a collection of n points in a bounded interval (without loss of generality,
[−1, 1]). Two datasets of size n are considered “neighboring” if all of their data points are equal
except for one. Intuitively, Definition 3 ensures that the output of A is statistically indistinguishable
from what the output would be if any one individual’s data was replaced with something arbitrary.

There exist differentially private algorithms for a wide variety of statistical tasks [JL14; LLSY17;
MTV+20]. One task of primary importance is differentially private data synthesis. Here, the goal is
to generate synthetic data in a differentially private way that matches the original dataset along a
set of relevant statistics or distributional properties. The appeal of private data synthesis is that,
once generated, the synthetic data can be used for a wide variety of downstream tasks: a separate
differentially private algorithm is not required for each potential use case.

Many methods for private data synthesis have been proposed [HLM12; ZCPSX17; LVW21; AAS+19;
ABK+21; RHR+23; DSB21]. Such methods offer strong empirical performance and a variety of
theoretical guarantees, e.g., that the generated synthetic data can effectively answer a fixed set of
data analysis queries with high accuracy [HLM12; MMSM22]. Recently, there has been interest in
algorithms with more general statistical guarantees – e.g., guarantees that the synthetic data comes
from a distribution close in statistical distance to the original data [WJF+16; BSV24; HVZ23]. By
leveraging Theorem 1, we contribute the following result to this line of work:

Theorem 4. Let X = {x1, . . . , xn} be a dataset with each xj ∈ [−1, 1]. Let p be the uniform
distribution on X. For any ϵ, δ ∈ (0, 1), there is an (ϵ, δ)-differentially private algorithm based on
Chebyshev moment matching that, in O(n) + poly(ϵn) time, returns a distribution q satisfying for a
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fixed constant c1,

E[W1(p, q)] ≤ c1
log(ϵn)

√
log(1/δ)

ϵn
.

Moreover, for any β ∈ (0, 1/2), W1(p, q) ≤ c1

√
log(1/β)+log(ϵn)

√
log(ϵn) log(1/δ)

ϵn with probability ≥ 1 − β.

The distribution q returned by the algorithm behind Theorem 4 is represented as a discrete
distribution on O(ϵn) points in [−1, 1], so can be sampled from efficiently to produce a synthetic
dataset of arbitrary size. Typically, δ is chosen to be 1/poly(n), in which case Theorem 4 essentially
matches a recent break-through result of Boedihardjo, Strohmer, and Vershynin [BSV24], who
give an (ϵ, 0)-differentially private method with expected Wasserstein-1 error O(log3/2(n)/(ϵn)),
which is optimal up to logarithmic factors.5 Like that method, we improve on a natural barrier
of Õ(1/(ϵ

√
n)) error that is inherent to “private histogram” methods for approximation in the

Wasserstein-1 distance [HRMS10; XWG10; QYL13; XZX+13; DR14; ZXX16; LLSY17].

The result of [BSV24] introduces a “superregular random walk” to directly add noise to x1, . . . , xn

using a correlated distribution based on a Haar basis. Our method is simpler, more computationally
efficient, and falls directly into the empirically popular Select, Measure, Project framework for
differentially private synthetic data synthetis [VAA+22; LVW21]. In particular, as detailed in
Algorithm 2, we compute the Chebyshev moments of p, add independent noise to each moment using
the standard Gaussian mechanism [DKMMN06; MM09], and then recover q matching these noisy
moments. We verify the strong empirical performance of the method in Section 6. A method similar
to ours was analyzed in prior work [WJF+16], although that work obtains a Wasserstein error bound
of Õ(1/ϵn1/3). Our tighter connection between Chebyshev moment estimation and distribution
approximation proven in Theorem 1 allows us to obtain a significantly better dependence on n.

We note that [HVZ23] also claims a faster and simpler alternative to [BSV24]. While the simplest
method in that paper has error scaling with Õ(1/

√
n) , they describe a more complex method that

matches our Õ(1/n) result up to a log(n) factor. While we are not aware of an implementation
of that algorithm, empirically comparing alternative methods for generating synthetic data with
Wasserstein distance guarantees would be a productive line of future work. Additionally, we note
that, in concurrent work to ours, Feldman et al. study a stronger notion of instance optimal private
distribution estimation in the Wasserstein distance [FMST24]. It would be interesting to explore if
Cheybshev moment matching has any applications in this setting.

Matrix Spectral Density Estimation. Spectral density estimation (SDE) is a problem of
central importance in numerical linear algebra. In the standard version of the problem, we are given
a symmetric n × n matrix A, which has real-valued eigenvalues λ1 ≥ . . . ≥ λn. Letting p denote
the uniform distribution over these n eigenvalues, the goal is to output q which is close to p in the
Wasserstein distance. An approximate spectral density can be useful in determining a variety of
properties of A’s eigenvalue spectrum – e.g., if its eigenvalues are decaying rapidly or if they follow
a distribution characteristic of random matrices. Efficient SDE algorithms were originally studied
in computational physics and chemistry, and are widely used to compute the “density of states” of
quantum systems [Ski89; SR94; MAP20]. More recently, the problem has found applications in
network science [DBB19; CKSV18; JKMSS24], deep learning [CKS91; PSG18; MM19; YGKM20],
optimization [GKX19], and beyond [LXES19; CTU22].

5An Ω(1/(ϵn)) lower bound on the expected Wasserstein error holds via standard ‘packing lower bounds’ which
imply that even the easier problem of privately reporting the mean value of a dataset supported on [−1, 1] requires
error Ω(1/(ϵn)). See e.g., [Kam20], Theorem 3.
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Many popular SDE algorithms are based on Chebyshev moment matching [WWAF06]. The ith

Chebyshev moment of the spectral density is equal to Ex∼p Tj(x) = 1
n

∑n
j=1 Ti(λj) = tr( 1

nTi(A)).
This trace can be estimated using a small number of matrix-vector products with Ti(A), using
stochastic trace estimation techniques like Hutchinson’s estimator [Hut90; MMMW21]. Since Ti is a
degree-i polynomial, each matrix-vector product with Ti(A) requires just i products with A. Thus,
with a small number of products with A, we can obtain approximate moments for use in estimating
p. Importantly, this approach can be applied even in the common implicit setting, where we do not
have direct accress to the entries of A, but can efficiently multiply the matrix by vectors [AT11].

Recently, [BKM22] gave a theoretical analysis of Chebyshev moment-matching for SDE, along with
the related Kernel Polynomial Method [WWAF06]. They show that when n is sufficiently large,
specifically, n = Ω̃(1/ϵ2), then Õ(1/ϵ) matrix-vector products with A (and poly(1/ϵ) additional
runtime) suffice to output q with W1(p, q) ≤ ϵ ∥A∥2, where ∥A∥2 = maxi |λi| is A’s spectral norm.

While the result of [BKM22] also holds for smaller values of n, it suffers from a polynomially
worse 1/ϵ dependence in the number of matrix-vector products required. By leveraging Theorem 1,
we resolve this issue, showing that Õ(1/ϵ) matrix-vector products suffice for any n. Roughly, by
weakening the requirements on how well we approximate A’s spectral moments, Theorem 1 allows us
to decrease the accuracy with which moments are estimated, and thus the number of matrix-vector
products used by Hutchinson’s method. Formally, we prove:

Theorem 5. There is an algorithm that, given ϵ ∈ (0, 1), symmetric A ∈ Rn×n with spectral density
p, and upper bound6 S ≥ ∥A∥2, uses Õ

(
1
ϵ

)
matrix-vector products7 with A and Õ(n/ϵ + 1/ϵ3)

additional time to output a distribution q such that, with high probability, W1(p, q) ≤ ϵS.

In the case when A is dense, Theorem 5 yields an algorithm that runs in Õ(n2/ϵ + 1/ϵ3) time, which
can be much faster than the O(nω) time required to compute p directly via a full eigendecomposition.
In terms of matrix-vector products, the result cannot be improved by more than logarithmic factors.
In particular, a recent lower bound on estimating the trace of a positive definite matrix [WZZ22]
implies that Ω(1/ϵ) matrix-vector products with A are necessary to approximate the spectral density
p up to error ϵ∥A∥2 (see Appendix C for details). Thus, Theorem 5 resolves, up to logarithmic
factors, the complexity of the SDE problem in the “matrix-vector query model” of computation,
where cost is measured via matrix-vector products with A. Understanding this model has become
a core topic in theoretical work on numerical linear algebraic, as it generalizes other important
models like the matrix sketching and Krylov subspace models [SWYZ21]. Our work contributes to
recent progress on establishing tight upper and lower bounds for central problems like linear system
solving [BHSW20], eigenvector approximation [MM15; SER18], trace estimation [JPWZ24], and
more [CDLLN23; BN23; ACK+24; CKHMM24].

2 Preliminaries
Before our main analysis, we introduce notation and technical preliminaries.

6The power method can compute S satisfying ∥A∥2 ≤ S ≤ 2∥A∥2 using O(log n) matrix-vector products with A
and O(n) additional runtime [KW92]. In some settings, an upper bound on ∥A∥2 may be known a priori [JKMSS24].

7Formally, we prove a bound of min
{

n, O
(

1
ϵ

)
·
(

1 + log2(1/ϵ) log2(1/(ϵδ))
nϵ

)}
matrix-vector products to succeed with

probability 1 − δ. For constant δ, this is at worst O
(
log4(1/ϵ)/ϵ

)
, but actually O(1/ϵ) for all ϵ = Ω(n/ log4 n).
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Notation. We let Z≥0 denote the natural numbers and Z>0 denote the positive integers. For a
vector x ∈ Rk, we let ∥x∥2 =

√∑k
i=1 x2

i denote the Euclidean norm. We often work with functions
from [−1, 1] → R. For two such functions, f, g, we use the convenient inner product notation:

⟨f, g⟩ def=
∫ 1

−1
f(x)g(x) dx.

We will often work with products, quotients, sums, and differences of two functions f, g, which are
denoted by f · g, f/g, f + g, and f − g, respectively. E.g., [f · g](x) = f(x)g(x). For a function
f : [−1, 1] → R, we let ∥f∥∞ denote ∥f∥∞ = maxx∈[−1,1] |f(x)| and ∥f∥1 =

∫ 1
−1 |f(x)| dx.

Wasserstein Distance. This paper concerns the approximation of probability distributions in
the Wasserstein-1 distance, defined below.

Definition 6 (Wasserstein-1 Distance). Let p and q be two distributions on R. Let Z(p, q) be the
set of all couplings between p and q, i.e., the set of distributions on R × R whose marginals equal p
and q. Then the Wasserstein-1 distance between p and q is:

W1(p, q) = inf
z∈Z(p,q)

[
E

(x,y)∼z
|x − y|

]
.

The Wasserstein-1 distance measures the total cost (in terms of distance per unit mass) required to
“transport” the distribution p to q. Alternatively, it has a well-known dual formulation:

Fact 7 (Kantorovich-Rubinstein Duality). Let p, q be as in Definition 6. Then W1(p, q) =
sup1-Lipschitz f ⟨f, p − q⟩, where f : R → R is 1-Lipschitz if |f(x) − f(y)| ≤ |x − y| for all x, y ∈ R.

Above we slightly abuse notation and use p and q to denote (generalized) probability density
functions8 instead of the distributions themselves. We will do so throughout the paper.

In our analysis, it will be convenient to assume when applying Fact 7 that, in addition to being
1-Lipschitz, f is smooth, i.e. that it is infinitely differentiable. Since any Lipschitz function can be
arbitrarily well approximated by a smooth function, we can do so without changing the distance. In
particular, for distributions on [−1, 1] we have:

W1(p, q) = sup
1-Lipschitz, smooth f

⟨f, p − q⟩. (4)

Chebyshev Polynomials and Chebyshev Series. Our main result analyzes the accuracy
of (noisy) Chebyshev polynomial moment matching for distribution approximation. The Cheby-
shev polynomials are defined in Section 1.1, and can alternatively be defined on [−1, 1] via the
trigonometric definition, Tj(cos θ) = cos(jθ). We use a few basic properties about these polynomials.

Fact 8 (Boundedness and Orthogonality, see e.g. [Hal15]). The Chebyshev polynomials satisfy:

1. Boundedness: ∀x ∈ [−1, 1] and j ∈ Z≥0, |Tj(x)| ≤ 1.

2. Orthogonality: The Chebyshev polynomials are orthogonal with respect to the weight function
w(x) = 1√

1−x2 . In particular, for i, j ∈ Z≥0, i ̸= j, ⟨Ti · w, Tj⟩ = 0.

To obtain an orthonormal basis we also define the normalized Chebyshev polynomials as follows:
8p and q might correspond to discrete distributions, in which case they will be sums of Dirac delta functions.
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Definition 9 (Normalized Chebyshev Polynomials). The jth normalized Chebyshev polynomial,
T̄j , is defined as T̄j

def= Tj/
√

⟨Tj · w, Tj⟩. Note that ⟨Tj · w, Tj⟩ equals π for j = 0 and π/2 for j ≥ 1.

We define the Chebyshev series of a function f : [−1, 1] → R as
∑∞

j=0

〈
f · w, T̄j

〉
T̄j . If f is Lipschitz

continuous then the Chebyshev series of f converges absolutely and uniformly to f [Tre19, Theorem
3.1]. Throughout this paper, we will also write the Chebyshev series of generalized probability
density functions, which could involve Dirac delta functions. This is standard in Fourier analysis,
even though the Chebyshev series does not converge pointwise [Lig58]. Formally, any density p can
be replaced with a Lipschitz continuous density (which has a convergent Cheybshev series) that is
arbitrarily close in Wasserstein distance and the same analysis goes through.

3 Main Analysis
In this section, we prove our main result, Theorem 1, as well as Corollary 2. To do so, we require
two main ingredients. The first is a constructive version of Jackson’s theorem on polynomial
approximation of Lipschitz functions [Jac30]. A modern proof can be found in [BKM22, Fact 3.2].

Fact 10 (Jackson’s Theorem [Jac30]). Let f : [−1, 1] → R be an ℓ-Lipschitz function. Then,
for any k ∈ Z>0, there are k + 1 constants 1 = b0

k > . . . > bk
k ≥ 0 such that the polynomial

fk =
∑k

j=0 b0
k ·
〈
f · w, T̄j

〉
· T̄j satisfies ∥f − fk∥∞ ≤ 18ℓ/k.

It is well-known that truncating the Chebyshev series of an ℓ-Lipschitz function f to k terms leads
to error O(log k · ℓ

k ) in the ℓ∞ distance [Tre19]. The above version of Jackson’s theorem improves
this bound by a log k factor by instead using a damped truncated Chebyshev series: each term in
the series is multiplied by a positive scaling factor between 0 and 1. We will not need to compute
these factors explicitly, but bi

k has a simple closed form (see [BKM22, Equation 12]).

To bound the Wasserstein distance between distributions p, q, we need to upper bound ⟨f, p − q⟩
for every 1-Lipschitz f . The value of Fact 10 is that this inner product is closely approximated
by ⟨fk, p − q⟩. Since fk is a damped Chebyshev series, this inner product can be decomposed as a
difference between p and q’s Chebyshev moments. Details will be shown in the proof of Theorem 1.

The second ingredient we require is a stronger bound on the decay of the Chebyshev coefficients,〈
f · w, T̄j

〉
, which appear in Fact 10. In particular, we prove the following result:

Lemma 11 (Global Chebyshev Coefficient Decay). Let f : [−1, 1] → R be an ℓ-Lipschitz, smooth
function, and let cj

def=
〈
f · w, T̄j

〉
for j ∈ Z≥0. Then,

∑∞
j=1(jcj)2 ≤ π

2 ℓ2.

Lemma 11 implies the well known fact that cj = O(ℓ/j) for j ≥ 1 [Tre08]. However, it is a much
stronger bound: if all we knew was that the Chebyshev coefficients are bounded by O(ℓ/j), then∑∞

j=1(jcj)2 could be unbounded. We show that it can in fact be bounded by O(ℓ2). Informally, the
implication is that not all coefficients can saturate the “local” O(ℓ/j) constraint at the same time,
but rather obey a stronger global constraint, captured by a weighted ℓ2 norm of the coefficients.

3.1 Proof of Theorem 1

We prove Lemma 11 in Section 3.3. Before doing so, we show how it implies Theorem 1.

Proof of Theorem 1. By (4), to bound W1(p, q), it suffices to bound ⟨f, p − q⟩ for any 1-Lipschitz,
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smooth f . Let fk be the approximation to any such f guaranteed by Fact 10. We have:

⟨f, p − q⟩ = ⟨fk, p − q⟩ + ⟨f − fk, p − q⟩ ≤ ⟨fk, p − q⟩ + ∥f − fk∥∞∥p − q∥1

≤ ⟨fk, p − q⟩ + 36
k

. (5)

In the last step, we use that ∥f − fk∥∞ ≤ 18/k by Fact 10, and that ∥p − q∥1 ≤ ∥p∥1 + ∥q∥1 = 2.
So, to bound ⟨f, p − q⟩ we turn our attention to bounding ⟨fk, p − q⟩.

For technical reasons, we will assume from here on that p and q are supported on the interval
[−1 + δ, 1 − δ] for arbitrarily small δ → 0. This is to avoid an issue with the Chebyshev weight
function w(x) = 1/

√
1 − x2 going to infinity at x = −1, 1. The assumption is without loss of

generality, since we can rescale the support of p and q by a (1 − δ) factor, and the distributions’
moments and Wasserstein distance change by an arbitrarily small factor as δ → 0.

We proceed by writing the Chebyshev series of the function (p − q)/w:

p − q

w
=

∞∑
j=0

〈
p − q

w
· w, T̄j

〉
T̄j =

∞∑
j=0

⟨p − q, T̄j⟩ · T̄j =
∞∑

j=1
⟨p − q, T̄j⟩ · T̄j . (6)

In the last step we use that both p and q are distributions so
〈
p − q, T̄0

〉
= 1/π − 1/π = 0.

Next, recall from Fact 10 that fk =
∑k

j=0 c′
j T̄j , where each c′

j satisfies |c′
j | ≤ |cj | for cj

def= ⟨f · w, T̄j⟩.
Using (6), the fact that ⟨T̄i · w, T̄j⟩ = 0 whenever i ̸= j, and that ⟨T̄j · w, T̄j⟩ = 1 for all j, we have:

⟨fk, p − q⟩ =
〈

fk · w,
p − q

w

〉
=
〈

k∑
j=0

c′
j T̄j · w,

∞∑
j=1

⟨p − q, T̄j⟩T̄j

〉
=

k∑
j=1

c′
j · ⟨p − q, T̄j⟩.

Via Cauchy-Schwarz inequality and our global decay bound from Lemma 11, we then have:

⟨fk, p − q⟩ =
k∑

j=1
jc′

j · ⟨p − q, T̄j⟩
j

≤

 k∑
j=1

(jc′
j)2

1/2

·

 k∑
j=1

1
j2 ⟨p − q, T̄j⟩2

1/2

≤

 k∑
j=1

(jcj)2

1/2

·

 k∑
j=1

1
j2 ⟨p − q, T̄j⟩2

1/2

≤
√

π/2

 k∑
j=1

1
j2 ⟨p − q, T̄j⟩2

1/2

. (7)

Observing from Definition 9 that ⟨p−q, T̄j⟩/
√

π/2 is exactly the difference between the jth Chebyshev
moments of p and q, we can apply the assumption of the theorem, (1), to upper bound (7) by Γ.

Plugging this bound into Equation (5), we conclude the main bound of Theorem 1:

W1(p, q) = sup
1-Lipschitz, smooth f

⟨f, p − q⟩ ≤ Γ + 36
k

.

We note that the constants in the above bound can likely be improved. Notably, the 36 comes
from multiplying the factor of 18 in Fact 10 by 2. As discussed in [BKM22, Appendix C.2], strong
numerical evidence suggests that this 18 can be improved to π, leading to a bound of Γ + 2π

k .

Finally, we comment on the special case in (3). If |Ex∼p Tj(x) − Ex∼q Tj(x)| = |⟨p − q, T̄j⟩|/
√

π/2 ≤
Γ ·
√

j
1+log k for all j then we have that

∑k
j=1

1
j2 ⟨p − q, Tj⟩2 ≤ Γ2

1+log k

∑k
j=1

1
j ≤ Γ2.
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Algorithm 1 Chebyshev Moment Regression
Input: Estimates m̂1, . . . , m̂k for the first k Chebyshev polynomial moments of a distribution p.
Output: A probability distribution q approximating p.

1: For g = ⌈k1.5⌉, let C = {x1, . . . , xg} be the degree g Cheybshev nodes. I.e., xi = cos
(

2i−1
2g π

)
.

2: Let q1, . . . , qg solve the following optimization problem:

minz1,...,zg

k∑
j=1

1
j2

(
m̂j −

g∑
i=1

ziTj(xi)
)2

subject to
g∑

i=1
zi = 1 and zi ≥ 0, ∀i ∈ {1, . . . , g} .

3: Return q =
∑m

i=1 qiδ(x − xi), where δ is the Dirac delta function.

3.2 Efficient recovery

The primary value of Theorem 1 for our applications is that, given sufficiently accurate estimates,
m̂1, . . . , m̂k, of p’s Chebyshev moments, we can recover a distribution q that is close in Wasserstein-1
distance to p, even if there is no distribution whose moments exactly equal m̂1, . . . , m̂k.

This claim is formalized in Corollary 2, whose proof is straightforward. We outline the main idea
here. Recall the condition of the corollary, that

∑k
j=1

1
j2

(
m̂j − ⟨p, T̄j⟩

)2
≤ Γ2. Now, suppose we

could solve the optimization problem:

q∗ = argmin
distributions q on [−1,1]

k∑
j=1

1
j2

(
m̂j − ⟨q, T̄j⟩

)2
.

Then by triangle inequality we would have: k∑
j=1

1
j2

(
⟨p, T̄j⟩ − ⟨q∗, T̄j⟩

)2
1/2

≤

 k∑
j=1

1
j2

(
m̂j − ⟨q∗, T̄j⟩

)2
1/2

+

 k∑
j=1

1
j2

(
m̂j − ⟨p, T̄j⟩

)2
1/2

≤ 2

 k∑
j=1

1
j2

(
m̂j − ⟨p, T̄j⟩

)2
1/2

≤ 2Γ. (8)

It then follows immediately from Theorem 1 that W1(p, q∗) ≤ O
(

1
k + Γ

)
, as desired.

The only catch with the argument above is that we cannot efficiently optimize over the entire
set of distributions on [−1, 1]. Instead, we have to optimize over a sufficiently fine discretization.
Specifically, we consider discrete distributions on a finite grid, choosing the Chebyshev nodes (of the
first kind) instead of a uniform grid because doing so yields a better approximation, and thus allows
for a coarser grid. Concretely, Corollary 2 is proven by analyzing Algorithm 1. The full analysis is
given in Appendix A.

We note that the optimization problem solved by Algorithm 1 is a simple linearly constrained
quadratic program with g = O(k1.5) variables and O(k1.5) constraints, so can be solved to high
accuracy in poly(k) time using a variety of methods [YT89; KV86; ART03]. In practice, the problem
can also be solved efficiently using first-order methods like projected gradient descent [WR22].
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3.3 Proof of Lemma 11

We conclude this section by proving Lemma 11, our global decay bound on the Chebyshev coefficients
of a smooth, Lipschitz function, which was key in the proof of Theorem 1. To do so we will leverage
an expression for the derivatives of the Chebyshev polynomials of the first kind in terms of the
Chebyshev polynomials of the second kind, which can be defined by the recurrence

U0(x) = 1 U1(x) = 2x Ui(x) = 2xUi−1(x) − Ui−2(x), for i ≥ 2.

We have the following standard facts (see e.g., [Riv69]).

Fact 12 (Chebyshev Polynomial Derivatives). Let Tj be the jth Chebyshev polynomial of the first
kind, and Uj be the jth Chebyshev polynomial of the second kind. Then, for j ≥ 1, T ′

j(x) = jUj−1(x).

Fact 13 (Orthogonality of Chebyshev polynomials of the second kind). The Chebyshev polynomials
of the second kind are orthogonal with respect to the weight function u(x) =

√
1 − x2. In particular,

∫ 1

−1
Ui(x)Uj(x)u(x) dx =

{
0, for i ̸= j
π
2 , for i = j .

With the above facts we can now prove Lemma 11.

Proof of Lemma 11. Let f be a smooth, ℓ-Lipschitz function, with Chebyshev expansion f(x) =∑∞
j=0 cj T̄j = 1√

π
c0T0 +

∑∞
j=1

√
2
π cjTj . Using Fact 12, we can write f ’s derivative as:

f ′(x) =
∞∑

j=1

√
2
π

cjT ′
j(x) =

√
2
π

∞∑
j=1

jcjUj−1(x) .

By the orthogonality property of Fact 13, we then have that∫ 1

−1
f ′(x)f ′(x)u(x) dx = 2

π

∞∑
j=1

j2c2
j

π

2 =
∞∑

j=1
j2c2

j .

Further, using that f is ℓ-Lipschitz and so |f ′(x)| ≤ ℓ, and that the weight function u(x) =
√

1 − x2

is non-negative, we can upper bound this sum by
∞∑

j=1
j2c2

j =
∫ 1

−1
f ′(x)f ′(x)u(x) dx ≤ ℓ2

∫ 1

−1
u(x) dx = πℓ2

2 .

This completes the proof of the lemma.

4 Private Synthetic Data
In this section, we present an application of our main result to differentially private synthetic data
generation. We recall the setting from Section 1.3: we are given a dataset X = {x1, . . . , xn}, where
each xi ∈ [−1, 1], and consider the distribution p that is uniform on X. The goal is to design an
(ϵ, δ)-differentially private algorithm that returns a distribution q that is close to p in Wasserstein
distance. For the purpose of defining differential privacy (see Def. 3), we consider the “bounded”
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notation of neighboring datasets, which applies to datasets of the same size [KM11]. Concretely,
X = {x1, . . . , xn} and X ′ = {x′

1, . . . , x′
n} are neighboring if xi ̸= x′

i for exactly one value of i.9

To solve this problem, we will compute the first n Chebyshev moments of p, then add noise to
those moments using the standard Gaussian mechanism. Doing so ensures that the noised moments
are (ϵ, δ)-differentially private. We then post-process the noised moments (which does not impact
privacy) by finding a distribution q that matches the moments. The analysis of our approach follows
directly from Theorem 1, although we use a slightly different method for recovering q than suggested
in our general Algorithm 1: in the differential privacy setting, we are able to obtain a moderately
faster algorithm that solves a regression problem involving O(n) variables instead of O(n1.5).

Before analyzing this approach, we introduce preliminaries necessary to apply the Gaussian mecha-
nism. In particular, applying the mechanism requires bounding the ℓ2 sensitivity of the function
mapping a distribution p to its Chebyshev moments. This sensitivity is defined as follows:

Definition 14 (ℓ2 Sensitivity). Let X be some data domain (in our setting, X = [−1, 1]n) and let
f : X → Rk be a vector valued function. The ℓ2-sensitivity of f , ∆2,f , is defined as:

∆2,f
def= max

neighboring datasets
X,X′∈X

∥f(X) − f(X ′)∥2.

The Gaussian mechanism provides a way of privately evaluating any function f with bounded ℓ2
sensitivity by adding a random Gaussian vector with appropriate variance. Let N (0, σ2Ik) denote a
vector of k i.i.d. mean zero Gaussians with variance σ2. We have the following well-known result:

Fact 15 (Gaussian Mechanism [DKMMN06; DR14]). Let f : X → Rk be a function with ℓ2-
sensitivity ∆2,f and let σ2 = ∆2

2,f · 2 ln(1.25/δ)/ϵ2, where ϵ, δ ∈ (0, 1) are privacy parameters. Then
the mechanism M = f(X) + η, where η ∼ N (0, σ2Ik) is (ϵ, δ)-differentially private.

We are now ready to prove the main result of this section, Theorem 4, which follows by analyzing
Algorithm 2. Note that Algorithm 2 is very similar to Algorithm 1, but we first round our distribution
to be supported on a uniform grid, G. Doing so will allow us to solve our moment regression problem
over the same grid, which is smaller than the set of Chebyshev nodes used in Algorithm 1.

Proof of Theorem 4. We analyze both the privacy and accuracy of Algorithm 2.

Privacy. For a dataset X = {x1, . . . , xn} ∈ [−1, 1]n, let f(X) be a vector-valued function mapping
to the first k = ⌈2ϵn⌉ (as set in Algorithm 2) scaled Chebyshev moments of the uniform distribution
over X. I.e.,

f(X) =


1 · 1

n

∑n
i=1 T̄1(xi)

1√
2 · 1

n

∑n
i=1 T̄2(xi)
...

1√
k

· 1
n

∑n
i=1 T̄k(xi)


9Although a bit tedious, our results can be extended to the “unbounded” notation of neighboring datasets, where

X and X ′ might differ in size by one, i.e., because X ′ is created by adding or removing a single data point from X.
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Algorithm 2 Private Chebyshev Moment Matching
Input: Dataset x1, . . . , xn ∈ [−1, 1], privacy parameters ϵ, δ > 0.
Output: A probability distribution q approximating the uniform distribution, p, on x1, . . . , xn.

1: Let G = {−1, −1 + 1
⌈ϵn⌉ , −1 + 2

⌈ϵn⌉ , . . . , 1}. Let r
def= |G| = 2⌈ϵn⌉ + 1 and let gi = −1 + i−1

⌈ϵn⌉
denote the ith element of G.

2: For i = 1, . . . , n, let x̃i = argminy∈G |xi − y|. I.e., round xi to the nearest multiple of 1/⌈ϵn⌉.
3: Set σ2 =

16
π

(1+log k) ln(1.25/δ)
ϵ2n2 .

4: Set k = ⌈2ϵn⌉.10 For j = 1, . . . , k, let m̂j = ηj + 1
n

∑n
i=1 T̄j(x̃i), where ηj ∼ N (0, jσ2).

5: Let q0, . . . , qr be the solution to the following optimization problem:

minz1,...,zr

k∑
j=1

1
j2

(
m̂j −

r∑
i=1

ziTj(gi)
)2

subject to
r∑

i=1
zi = 1 and zi ≥ 0, ∀i ∈ {1, . . . , r} .

6: Return q =
∑r

i=1 qiδ(x − gi), where δ is the Dirac delta function.

By Fact 8, maxxi∈[−1,1] |T̄j(xi)| ≤
√

2/π for j ∈ Z>0, so we have:

∆2
2,f = max

neighboring datasets
X,X′∈X

∥f(X) − f(X ′)∥2
2 ≤

k∑
j=1

1
jn2 · 8

π
≤ 8

πn2 (1 + log k). (9)

For two neighboring datasets X, X ′, let X̃ and X̃ ′ be the rounded datasets computed in line 2
of Algorithm 2 – i.e., X̃ = {x̃1, . . . , x̃n}. Observe that X̃ and X̃ ′ are also neighboring. Thus, it
follows from Fact 15 and the sensitivity bound of eq. (9) that m̃ = f(X̃) + η is (ϵ, δ)-differentially
private for η ∼ N (0, σ2Ik) as long as σ2 = 16

π (1 + log k) ln(1.25/δ)/(n2ϵ2). Finally, observe that m̂j

computed by Algorithm 2 is exactly equal to
√

j times the jth entry of such an m̃. So m̂1, . . . , m̂k

are (ϵ, δ)-differentially private. Since the remainder of Algorithm 2 simply post-processes m̂1, . . . , m̂k

without returning to the original data X, the output of the algorithm is also (ϵ, δ)-differentially
private, as desired.

Accuracy. Algorithm 2 begins by rounding the dataset X so that every data point is a multiple
of 1/⌈ϵn⌉. Let p̃ be the uniform distribution over the rounded dataset X̃. Then it is not hard to see
from the transportation definition of the Wasserstein-1 distance that:

W1(p, p̃) ≤ 1
2⌈ϵn⌉

. (10)

In particular, we can transport p to p̃ by moving every unit of 1/n probability mass a distance of at
most 1/2⌈ϵn⌉. Given (10), it will suffice to show that Algorithm 2 returns a distribution q that is
close in Wasserstein distance to p̃. We will then apply triangle inequality to bound W1(p, q).

10While we choose k = ⌈2ϵn⌉ by default, any choice of k = ⌈cϵn⌉ for constant c suffices to obtain the bound of
Theorem 4. Similarly, the grid spacing in G can made finer or coarse by a multiplicative constant. A larger k or a finer
grid will lead to a slightly more accurate result at the cost of a slower algorithm. We chose defauts so that any error
introduced from the grid and choice of k is swamped by error incurred from the noise added in Line 4. I.e., the error
cannot be improved by more than a factor of two with difference choices. See the proof of Theorem 4 for more details.
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To show that Algorithm 2 returns a distribution q that is close to p̃ in Wasserstein distance, we
begin by bounding the moment estimation error:

E
def=

k∑
j=1

1
j2 (m̂j(p) − ⟨p̃, Tj⟩)2 ,

where k is as chosen in Algorithm 2 and ⟨p̃, Tj⟩ = 1
n

∑n
i=1 Tj(x̃i). Let σ2 and η1, . . . , ηk be as in

Algorithm 2. Applying linearity of expectation, we have that:

E[E] = E

 k∑
j=1

1
j2 η2

j

 =
k∑

j=1

1
j2 E

[
η2

j

]
=

k∑
j=1

1
j2 · jσ2 ≤ (1 + log k)σ2. (11)

Now, let q be as in Algorithm 2. Using a triangle inequality argument as in Section 3.2, we have:

Γ2 =
k∑

j=1

1
j2 (⟨q, Tj⟩ − ⟨p̃, Tj⟩)2 ≤

k∑
j=1

1
j2 (⟨q, Tj⟩ − m̂j)2 +

k∑
j=1

1
j2 (⟨p̃, Tj⟩ − m̂j)2 ≤ 2E.

Above we use that p̃ is a feasible solution to the optimization problem solved in Algorithm 2
and, since q is the optimum,

∑k
j=1

1
j2 (⟨q, Tj⟩ − m̂j)2 ≤

∑k
j=1

1
j2 (⟨p̃, Tj⟩ − m̂j)2. It follows that

E[Γ2] ≤ 2E[E], and, via Jensen’s inequality, that E[Γ] ≤
√

2E[E]. Plugging into Theorem 1, we
have for constant c:

E[W1(p̃, q)] ≤ E[Γ] + c

k
≤
√

2(1 + log k)σ2 + c

k
= O

(
log(ϵn)

√
log(1/δ)

ϵn

)
. (12)

By triangle inequality and (10), W1(p, q) ≤ W1(p̃, q) + W1(p̃, p) ≤ W1(p̃, q) + 1
2⌈ϵn⌉ . Combined with

the bound above, this proves the accuracy claim of the theorem.

Recall from Section 3 that the constant c in Theorem 1 is bounded by 36, but can likely be
replaced by 2π, in which case it can be checked that the c

k term in (12) will be dominated by the√
2(1 + log k)σ2 term for our default of k = ⌈2ϵn⌉ in Algorithm 2. However, any choice k = Θ(ϵn)

suffices to prove the theorem. We also remark that our bound on the expected value of W1(p̃, q)
can also be shown to hold with high probability. See Appendix B for details.

We conclude by noting that, as in our analysis of Algorithm 1 (see Section 3.2), Algorithm 2 requires
solving a linearly constrained quadratic program with r = 2⌈ϵn⌉ + 1 variables and r + 1 constraints,
which can be done to high accuracy in poly(ϵn) time.

5 Spectral Density Estimation
In this section, we present a second application of our main result to the linear algebraic problem of
Spectral Density Estimation (SDE). We recall the setting from Section 1.3: letting p be the uniform
distribution over the eigenvalues given λ1 ≥ · · · ≥ λn of a symmetric matrix A ∈ Rn×n, the goal is
to find some distribution q that satisfies

W1(p, q) ≤ ϵ∥A∥2. (13)

In many settings of interest, A is implicit and can only be accessed via matrix-vector multiplications.
So, we want to understand 1) how many matrix-vector multiplications with A are required to achieve
(13), and 2) how efficiently can we achieve (13) in terms of standard computational complexity.
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We show how to obtain improved answers to these questions by using our main result, Theorem 1, to
give a tighter analysis of an approach from [BKM22]. Like other SDE methods, that approach uses
stochastic trace estimation to estimate the Chebyshev moments of p. In particular, let m1, . . . , mk

denote the first k Chebyshev moments. I.e., mj = 1
n

∑n
i=1 Tj(λi). Then we have for each j,

mj = 1
n

n∑
i=1

Tj(λi) = 1
n

tr(Tj(A)),

where tr is the matrix trace. Stochastic trace estimation methods like Hutchinsons method can
approximate tr(Tj(A)) efficiently via multiplication of Tj(A) with random vectors [Gir87; Hut90].
In particular, for any vector g ∈ Rn with mean 0, variance 1 entries, we have that:

E[gT Tj(A)g] = tr(Tj(A)).

Tj(A)g, and thus gT Tj(A)g, can be computed using j matrix-vector products with A. In fact, by
using the Chebyshev polynomial recurrence, we can compute gT Tj(A)g for all j = 1, . . . , k using k
total matrix-vector products:

T0(A)g = g T1(A)g = Ag . . . Tj(A)g = 2ATj−1(A)g − Tj−2(A)g.

Optimized methods can actually get away with ⌈k/2⌉ matrix-vector products [Che23]. Using a
standard analysis of Hutchinson’s trace estimator (see, e.g., [RA15] or [CK22]) Braverman et al.
[BKM22] prove the following:

Lemma 16 ([BKM22, Lemma 4.2]). Let A be a matrix with ∥A∥2 ≤ 1. Let C be a fixed constant,
j ∈ Z>0, α, γ ∈ (0, 1), and ℓj = ⌈1 + C log2(1/α)

njγ2 ⌉. Let g1, . . . , gℓj
∼ Uniform({−1, 1}n) and let

m̂j = 1
ℓjn

∑ℓj

i=1 g⊤
i Tj(A)gi. Then, with probability 1 − α, |m̂j − mj | ≤

√
jγ.

We combine this lemma with Theorem 1 to prove the following more precise version of Theorem 5:

Theorem 17. There is an algorithm that, given ϵ ∈ (0, 1), symmetric A ∈ Rn×n with spectral density
p, and upper bound S ≥ ∥A∥2, uses min

{
n, O

(
1
ϵ ·
(
1 + log2(1/ϵ) log2(1/(ϵδ))

nϵ

))}
matrix-vector products

with A and Õ(n/ϵ + 1/ϵ3) additional time to output a distribution q such that, with probability at
least 1 − δ, W1(p, q) ≤ ϵS.

Proof. First note that, if ϵ ≤ 1/n, the above result can be obtained by simply recovering A by
multiplying by all n ≤ 1/ϵ standard basis vectors. We can then compute a full eigendecomposition
to extract A’s spectral density, which takes o(n3) time. So we focus on the regime when ϵ > 1/n.

Without loss of generality, we may assume from here forward that ∥A∥2 ≤ 1 and our goal is to prove
that W1(p, q) ≤ ϵ. In particular, we can scale A by 1/S, compute an approximate spectral density q
with error ϵ, then rescale by S to achieve error ϵS. As mentioned in Section 1.3, an S satisfying
∥A∥2 ≤ S ≤ 2∥A∥2 can be computed using O(log n) matrix-multiplications with A via the power
method [KW92]. Given such an S, Theorem 17 implies an error bound of 2ϵ∥A∥2. In some settings
of interest for the SDE problem, for example when A is the normalized adjacency matrix of a graph
[CKSV18; DBB19; JKMSS24], ∥A∥2 is known a priori, so we can simply set S = ∥A∥2.

Choose k = ĉ/ϵ for a sufficiently large constant ĉ and apply Lemma 16 for all j = 1, . . . , k with
γ = 1

k
√

1+log k
, and α = δ/k. By a union bound, we obtain estimates m̂1, . . . , m̂k satisfying, for all j,

|m̂j − mj | ≤
√

jγ =
√

j · 1
k
√

1 + log k
. (14)
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Applying Theorem 1 (specifically, (3)) and Corollary 2, we conclude that, using these moments,
Algorithm 1 can recover a distribution q satisfying:

W1(p, q) ≤ 2c′

k
.

I.e., we have W1(p, q) ≤ ϵ as long as ĉ ≥ 2c′. This proves the accuracy bound. We are left to analyze
the complexity of the method. We first bound the total number of matrix-vector multiplications
with A, which we denote by T . Since ℓj ≤ ℓj−1 for all j, computing the necessary matrix-vector
product to approximate mj only costs ℓj−1 additional products on top of those used to approximate
mj−1. So, recalling that ℓj = ⌈1 + C log2(1/α)

njγ2 ⌉, we have:

T =
(

1 + C log2(k/δ)
nγ2

)
+
(

1 + C log2(k/δ)
2nγ2

)
+ · · · +

(
1 + C log2(k/δ)

knγ2

)
.

Using the fact that 1 + 1/2 + . . . + 1/k ≤ 1 + log(k) we can upper bound T by:

T = O

(
k + log2(k/δ) log(k)

nγ2

)
= O

(
k + k2 log2(k/δ) log2(k)

n

)
,

which gives the desired matrix-vector product bound since k = O(1/ϵ).

In terms of computational complexity, Corollary 2 immediately yields a bound of poly(1/ϵ) time to
solve the quadratic program in Algorithm 1. However, this runtime can actually be improved to
Õ
(
1/ϵ3) by taking advantage of the fact that m̂1, . . . , m̂k obey the stronger bound of (3) instead of

just (1). This allows us to solve a linear program instead of a quadratic program. In particular, let C
be a grid of Chebyshev nodes, as used in Algorithm 1. I.e., C = {x1, . . . , xg} where xi = cos

(
2i−1

2g π
)
.

Let qLP
1 , . . . , qLP

g be any solution to the following linear program with variables z1, . . . , zg:

minimize 0

subject to
g∑

i=1
zi = 1

zi ≥ 0, ∀i ∈ {1, . . . , g}
g∑

i=1
Tj(xi)zi ≤ m̂j +

(√
jγ + j

√
2π

g

)
, ∀j ∈ {1, . . . , k}

g∑
i=1

Tj(xi)zi ≥ m̂j −
(√

jγ + j
√

2π

g

)
, ∀j ∈ {1, . . . , k}.

(15)

We first verify that the linear program has a solution. To do so, note that, by Equation (16) in
Appendix A, there exists a distribution p̃ supported on C = {x1, . . . , xg}, such that |mj(p) − mj(p̃)| ≤
j
√

2π
g . By (14) and triangle inequality, it follows that p̃ is a valid solution to the linear program.

Next, let qLP =
∑g

i=1 qLP
i δ(x − xi) be the distribution formed by any solution to the linear program.

We have that, for any j,∣∣∣mj − ⟨qLP, Tj⟩
∣∣∣ ≤

∣∣∣⟨qLP, Tj⟩ − m̂j

∣∣∣+ |m̂j − mj | ≤ 2
√

jγ + j
√

2π

g
.

Setting g = k1.5√1 + log(k) and plugging into Theorem 1, we conclude that

W1(p, qLP) ≤ O(1/k).
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The linear program in (15) has g = Õ(k1.5) variables, boundary constraints for each variable, and
2k + 1 other constraints. It follows that it can be solved in Õ(gk ·

√
k) = Õ(k3) time [LS14; LS15],

which equals Õ(1/ϵ3) time since we chose k = O(1/ϵ).

6 Empirical Evaluation of Private Synthetic Data
In this section, we empirically evaluate the application of our main result to differentially private
synthetic data generation, as presented in Section 4. Specifically, we implement the procedure given
in Algorithm 2, which produces an (ϵ, δ)-differentially private distribution q that approximates
the uniform distribution, p, over a given dataset X = x1, . . . , xn ∈ [−1, 1]. We solve the linearly
constrained least squares problem from Algorithm 2 using an interior-point method from MOSEK
[DB16; MOS19; ART03]. We evaluate the error W1(p, q) achieved by the procedure on both real
world data and data generated from known probability density functions (PDFs), with a focus on
how the error scales with the number of data points, n.

For real world data, we first consider the American Community Survey (ACS) data from the
Folktables repository [DHMS21]. We use the 2018 ACS 1-Year data for the state of New York; we
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Figure 1: Experimental validation of Algorithm 2 for private synthetic data. For each dataset, we
collect subsamples of size n for varying choices of n. We plot the W1 distance between the uniform
distribution, p, over the subsample and a differentially private approximation, q, constructed by
Algorithm 2 with privacy parameters ϵ = 0.5 and δ = 1/n2. As predicted by Theorem 4, the
Wasserstein error scales as Õ(1/n). The solid red line shows the mean of W1(p, q) over 10 trials,
while the shaded region plots one standard deviation around the mean (based on the empirical
variance across trials). The blue dotted line plots the theoretical bound of Theorem 4, without any
leading constant.
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give results for the PINCP (personal income) column from this data. We also consider the California
Housing dataset [PB97]; we give results for the HouseAge (median house age in district) column,
from this data. Finally, we consider the CDC Diabetes Health Indicators dataset [Teb21; KLN24];
we give results for the PhysHlth (number of physically unhealthy days) from this data. For each of
these data sets, we collect uniform subsamples of size n for varying values of n.

In addition to the real world data, we generate datasets of varying size from three fixed probability
distributions over [−1, 1]. We set the probability mass for x ∈ [−1, 1] proportional to a chosen
function f(x), and equal to 0 for x /∈ [−1, 1]. We consider the following choices for f : Gaussian,
f(x) = e−0.5x2 ; Sine, f(x) = sin(πx) + 1; and Power Law, f(x) = (x + 1.1)−2.

For all datasets, we run Algorithm 2 with privacy parameters ϵ = 0.5 and δ = 1/n2; this is a
standard setting for private synthetic data [MMSM22; RHR+23]. We use the default choice of
k = ⌈2ϵn⌉. In Figure 1, we plot the average Wasserstein error achieved across 10 trials of the method
as a function of n. Error varies across trials due to the randomness in Algorithm 2 (given its use of
the Gaussian mechanism) and due to the random choise of a subsample of size n.

As we can see, our experimental results strongly confirm our theoretical guarantees: the average W1
error closely tracks our theoretical accuracy bound of O

(
log(ϵn)

√
log(1/δ)/ϵn

)
from Theorem 4,

which is shown as a blue dotted line in Figure 1.
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√
rank) iterations and faster algorithms for maximum flow.

In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 424–433, 2014 (cited on page 16).

[LS15] Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms
for linear programming. In Proceedings of the 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 230–249, 2015 (cited on page 16).

[LLSY17] Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Differential Privacy: From Theory
to Practice. Synthesis Lectures on Information Security, Privacy, and Trust. Springer,
2017 (cited on pages 3, 4).

[LXES19] Ruipeng Li, Yuanzhe Xi, Lucas Erlandson, and Yousef Saad. The eigenvalues slic-
ing library (EVSL): algorithms, implementation, and software. SIAM Journal on
Scientific Computing, 41(4):C393–C415, 2019 (cited on page 4).

[Lig58] Michael J. Lighthill. An introduction to Fourier analysis and generalised functions.
Cambridge University Press, 1958 (cited on page 7).

[LVW21] Terrance Liu, Giuseppe Vietri, and Steven Z. Wu. Iterative methods for private syn-
thetic data: unifying framework and new methods. In Advances in Neural Information
Processing Systems 34 (NeurIPS), 2021 (cited on pages 3, 4).

[MM19] Michael Mahoney and Charles Martin. Traditional and heavy tailed self regularization
in neural network models. In Proceedings of the 36th International Conference on
Machine Learning (ICML), pages 4284–4293, 2019 (cited on page 4).

[MMSM22] Ryan McKenna, Brett Mullins, Daniel Sheldon, and Gerome Miklau. AIM: an
adaptive and iterative mechanism for differentially private synthetic data. Proceedings
of the VLDB Endowment, 15(11):2599–2612, 2022 (cited on pages 1, 3, 17).

[MM09] Frank McSherry and Ilya Mironov. Differentially private recommender systems:
building privacy into the Netflix prize contenders. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pages 627–636, 2009 (cited on page 4).

[MMMW21] Raphael A. Meyer, Cameron Musco, Christopher Musco, and David Woodruff.
Hutch++: optimal stochastic trace estimation. Proceedings of the 4th Symposium on
Simplicity in Algorithms (SOSA), 2021 (cited on page 5).

21

https://www.archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators
https://www.archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators
https://www.archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators


[MTV+20] Fatemehsadat Mireshghallah, Mohammadkazem Taram, Praneeth Vepakomma, Ab-
hishek Singh, Ramesh Raskar, and Hadi Esmaeilzadeh. Privacy in deep learning: a
survey. arXiv:2004.12254, 2020 (cited on page 3).

[MV10] Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures
of gaussians. In Proceedings of the 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 93–102, 2010 (cited on page 1).

[MAP20] Dean Moldovan, Misa Andelkovic, and Francois Peeters. pybinding v0.9.5: a Python
package for tight-binding calculations, 2020 (cited on page 4).

[MOS19] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.0.
2019 (cited on pages 2, 16).

[MM15] Cameron Musco and Christopher Musco. Randomized block Krylov methods for
stronger and faster approximate singular value decomposition. In Advances in Neural
Information Processing Systems 28 (NeurIPS), pages 1396–1404, 2015 (cited on
page 5).

[PB97] R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics &
Probability Letters, 33(3):291–297, 1997 (cited on page 17).

[Pea94] Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical
Transactions of the Royal Society of London. (A.), 185:71–110, 1894 (cited on page 1).

[Pea36] Karl Pearson. Method of moments and method of maximum likelihood. Biometrika,
28(1/2):34–59, 1936 (cited on page 1).

[PSG18] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. The emergence of
spectral universality in deep networks. In Proceedings of the 21st International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 1924–1932,
2018 (cited on page 4).

[QYL13] Wahbeh Qardaji, Weining Yang, and Ninghui Li. Understanding hierarchical meth-
ods for differentially private histograms. Proceedings of the VLDB Endowment,
6(14):1954–1965, 2013 (cited on page 4).

[RSS14] Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. Learning mixtures
of arbitrary distributions over large discrete domains. In Proceedings of the 5th
Conference on Innovations in Theoretical Computer Science (ITCS), pages 207–224,
2014 (cited on page 1).

[Riv69] Theodore J. Rivlin. An introduction to the approximation of functions. Dover Publi-
cations, 1969 (cited on page 10).

[RA15] Farbod Roosta-Khorasani and Uri M. Ascher. Improved bounds on sample size
for implicit matrix trace estimators. Foundations of Computational Mathematics,
15(5):1187–1212, 2015 (cited on page 14).

[RHR+23] Lucas Rosenblatt, Anastasia Holovenko, Taras Rumezhak, Andrii Stadnik, Bernease
Herman, Julia Stoyanovich, and Bill Howe. Epistemic parity: reproducibility as an
evaluation metric for differential privacy. Proceedings of the VLDB Endowment, 2023
(cited on pages 3, 17).

22

http://arxiv.org/abs/2004.12254


[RLP+20] Lucas Rosenblatt, Xiaoyan Liu, Samira Pouyanfar, Eduardo de Leon, Anuj Desai,
and Joshua Allen. Differentially private synthetic data: applied evaluations and
enhancements. arXiv:2011.05537, 2020 (cited on page 1).

[SR94] Richard N. Silver and H. Röder. Densities of states of mega-dimensional hamiltonian
matrices. International Journal of Modern Physics C, 5(4):735–753, 1994 (cited on
page 4).

[SER18] Max Simchowitz, Ahmed El Alaoui, and Benjamin Recht. Tight query complexity
lower bounds for PCA via finite sample deformed wigner law. In Proceedings of the
50th Annual ACM Symposium on Theory of Computing (STOC), 2018 (cited on
page 5).

[Ski89] John Skilling. The eigenvalues of mega-dimensional matrices. In Maximum Entropy
and Bayesian Methods. Springer Netherlands, 1989 (cited on page 4).

[SWYZ21] Xiaoming Sun, David P. Woodruff, Guang Yang, and Jialin Zhang. Querying a
matrix through matrix-vector products. ACM Trans. Algorithms, 17(4), 2021 (cited
on page 5).

[Teb21] Alex Teboul. Diabetes Health Indicators Dataset. https://www.kaggle.com/
datasets/alexteboul/diabetes-health-indicators-dataset, 2021. [Accessed
11-07-2024] (cited on page 17).

[Tre08] Lloyd N. Trefethen. Is Gauss Quadrature Better than Clenshaw–Curtis? SIAM
Review, 50(1):67–87, 2008 (cited on page 7).

[Tre19] Lloyd N. Trefethen. Approximation Theory and Approximation Practice, Extended
Edition. SIAM-Society for Industrial and Applied Mathematics, 2019 (cited on
pages 3, 7).

[VAA+22] Giuseppe Vietri, Cedric Archambeau, Sergul Aydore, William Brown, Michael Kearns,
Aaron Roth, Ankit Siva, Shuai Tang, and Steven Z Wu. Private synthetic data
for multitask learning and marginal queries. In Advances in Neural Information
Processing Systems 35 (NeurIPS), 2022 (cited on page 4).

[Wai19] Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University
Press, 2019 (cited on page 26).

[WJF+16] Ziteng Wang, Chi Jin, Kai Fan, Jiaqi Zhang, Junliang Huang, Yiqiao Zhong, and
Liwei Wang. Differentially private data releasing for smooth queries. Journal of
Machine Learning Research, 17(51):1–42, 2016 (cited on pages 1, 3, 4).

[WWAF06] Alexander Weiße, Gerhard Wellein, Andreas Alvermann, and Holger Fehske. The
kernel polynomial method. Rev. Mod. Phys., 78:275–306, 2006 (cited on pages 1, 5).

[WZZ22] David Woodruff, Fred Zhang, and Richard Zhang. Optimal query complexities for
dynamic trace estimation. In Advances in Neural Information Processing Systems
35 (NeurIPS), 2022 (cited on pages 5, 27).

[WR22] Stephen J. Wright and Benjamin Recht. Optimization for Data Analysis. Cambridge
University Press, 2022 (cited on page 9).

23

http://arxiv.org/abs/2011.05537
https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset


[WY19] Yihong Wu and Pengkun Yang. Chebyshev polynomials, moment matching, and
optimal estimation of the unseen. The Annals of Statistics, 47(2):857–883, 2019
(cited on page 1).

[WY20] Yihong Wu and Pengkun Yang. Optimal estimation of Gaussian mixtures via denoised
method of moments. The Annals of Statistics, 48(4):1981–2007, 2020 (cited on page 1).

[XWG10] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. Differential privacy via wavelet
transforms. IEEE Transactions on knowledge and data engineering, 23(8):1200–1214,
2010 (cited on page 4).

[XZX+13] Jia Xu, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, Ge Yu, and Marianne Winslett.
Differentially private histogram publication. The VLDB Journal, 22:797–822, 2013
(cited on page 4).

[YGKM20] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. PyHessian: neu-
ral networks through the lens of the Hessian. In 2020 IEEE International Conference
on Big Data, pages 581–590, 2020 (cited on page 4).

[YT89] Yinyu Ye and Edison Tse. An extension of Karmarkar’s projective algorithm for
convex quadratic programming. Mathematical Programming, 44(1):157–179, 1989
(cited on page 9).

[ZCPSX17] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Xiaokui
Xiao. Privbayes: private data release via Bayesian networks. ACM Transactions on
Database Systems (TODS), 42(4):1–41, 2017 (cited on page 3).

[ZXX16] Jun Zhang, Xiaokui Xiao, and Xing Xie. PrivTree: a differentially private algo-
rithm for hierarchical decompositions. In Proceedings of the 2016 ACM SIGMOD
International Conference on Management of Data, pages 155–170, 2016 (cited on
page 4).

A Proof of Corollary 2
In this section, we give the full proof of Corollary 2. We require the following basic property about
the Chebyshev nodes:

Lemma 18 (Chebyshev Node Approximation). Let C = {x1, . . . , xg} be the degree g Chebyshev
nodes. I.e., xi = cos

(
2i−1

2g π
)
. Let rC : [−1, 1] → C be a function that maps a point x ∈ [−1, 1] to

the point y ∈ C that minimizes
∣∣cos−1(x) − cos−1(y)

∣∣, breaking ties arbitrarily. For any x ∈ [−1, 1],∣∣cos−1(x) − cos−1(rC(x))
∣∣ ≤ π

2g .

Proof. For any two consecutive points xi, xi+1 in the C,∣∣∣cos−1(xi) − cos−1(xi+1)
∣∣∣ = π

g
.

Since cos−1(x) is non-increasing, for any x ∈ [xi+1, xi], cos−1(x) ∈ [cos−1(xi), cos−1(xi+1)]. So,
cos−1(x) has distance at most π

2g from either cos−1(xi) or cos−1(xi+1). Additionally, we can check
that

∣∣cos−1(x) − cos−1(x1)
∣∣ ≤ π

2g for any x < x1 and
∣∣cos−1(x) − cos−1(xg)

∣∣ ≤ π
2g for any x > xg.

With Lemma 18 in place, we are ready to prove Corollary 2.
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Proof of Corollary 2. Let C and rC : [−1, 1] → C be as in Lemma 18. For i ∈ {1, . . . , g}, let Yi be
the set of points in [−1, 1] that are closest to xi ∈ C, i.e., Yi = {x ∈ [−1, 1] : rC(x) = xi}. Let p̃ be a
distribution supported on the set C with mass

∫
Yi

p(x) dx on xi ∈ C. For all j ∈ 1, . . . , k we have:

∣∣∣⟨p, T̄j⟩ − ⟨p̃, T̄j⟩
∣∣∣ =

∣∣∣∣∣
g∑

i=1

∫
Yi

T̄j(x)p(x) dx −
(∫

Yi

p(x) dx

)
T̄j(xi)

∣∣∣∣∣
=
∣∣∣∣∣

g∑
i=1

(∫
Yi

p(x) dx

)
T̄j(yi) −

(∫
Yi

p(x) dx

)
T̄j(xi)

∣∣∣∣∣ (for some yi ∈ Yi)

≤
g∑

i=1

(∫
Yi

p(x) dx

) ∣∣∣T̄j(yi) − T̄j(xi)
∣∣∣

=
g∑

i=1

(∫
Yi

p(x) dx

)
·
√

2
π

·
∣∣∣cos(j cos−1(yi)) − cos(j cos−1(xi))

∣∣∣
≤

g∑
i=1

(∫
Yi

p(x) dx

)
·
√

2
π

· jπ

2g
= j

√
π/2
g

(16)

The second equality follows from the intermediate value theorem. The first inequality follows by
triangle inequality. The third equality follows by the trigonometric definition of the (normalized)
Chebyshev polynomials. The second inequality follows from Lemma 18 and the fact that the
derivative of cos(jx) is bounded by j. The bound in (16) then yields: k∑

j=1

1
j2

(
⟨p, T̄j⟩ − ⟨p̃, T̄j⟩

)2
1/2

≤
√

πk/2
g

. (17)

Observe also that, since p̃ is supported on C, it is a valid solution to the optimization problem solved
by Algorithm 1. Accordingly, we have that: k∑

j=1

1
j2

(
m̂j − ⟨q, T̄j⟩

)2
1/2

≤

 k∑
j=1

1
j2

(
m̂j − ⟨p̃, T̄j⟩

)2
1/2

(18)

Applying triangle inequality, followed by (18), triangle inequality again, and finally (17), we have: k∑
j=1

1
j2

(
⟨p, T̄j⟩ − ⟨q, T̄j⟩

)2
1/2

≤

 k∑
j=1

1
j2

(
⟨p, T̄j⟩ − m̂j

)2
1/2

+

 k∑
j=1

1
j2

(
m̂j − ⟨q, T̄j⟩

)2
1/2

≤

 k∑
j=1

1
j2

(
⟨p, T̄j⟩ − m̂j

)2
1/2

+

 k∑
j=1

1
j2

(
m̂j − ⟨p̃, T̄j⟩

)2
1/2

≤ 2

 k∑
j=1

1
j2

(
⟨p, T̄j⟩ − m̂j

)2
1/2

+

 k∑
j=1

1
j2

(
⟨p, T̄j⟩ − ⟨p̃, T̄j⟩

)2
1/2

≤ 2Γ +
√

2πk

g
.

Setting g = ⌈k1.5⌉, we can apply Theorem 1 to conclude that, for a fixed constant c′,

W1(p, q) ≤ c

k
+ 2Γ +

√
π/2
k

≤ c′ ·
(1

k
+ Γ

)
.
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B Theorem 4 High Probability Bound
In this section, we prove the high probability bound on Wasserstein distance stated in Theorem 4,
which follows from a standard concentration bound for sub-exponential random variables [Wai19].
We recall that a random variable X is subexponential with parameters (ν, α) if:

E[eλ(X−E[X])] ≤ eν2λ2/2 for all |λ| ≤ 1
α

.

We require the following well-known fact that a chi-square random variable with one degree of
freedom is subexponential:

Fact 19 (Sub-Exponential Parameters [Wai19, Example 2.8]). Let η ∼ N (0, σ2). Then, η2 is
sub-exponential random variable with parameters (2σ2, 4σ2).

We also require the following concentration inequality for a sum of sub-exponential random variable:

Fact 20 ([Wai19, Equation 2.18]). Consider independent random variables γ1, . . . , γk, where,
∀j ∈ 1, . . . , k, γj is sub-exponential with parameters (νj , αj). Let ν∗ =

√∑k
j=1 ν2

j and α∗ =
max {α1, . . . , αk}. Then we have:

P

 k∑
j=1

(γj − E[γj ]) ≥ t

 ≤

exp
(

−t2

2ν2
∗

)
for 0 ≤ t ≤ ν2

∗
α∗

,

exp
(

−t
2α∗

)
for t > ν2

∗
α∗

.

Proof of high-probability bound of Theorem 4. Recalling the proof of the expectation bound of The-
orem 4 from Section 4, it suffices to bound E =

∑k
j=1

1
j2 (m̂j(p) − ⟨p̃, Tj⟩)2 with high probability.

Let γj = η2
j /j2, where ηj ∼ N (0, jσ2) is as in Algorithm 2. Then recall that E =

∑k
j=1 γj .

From Fact 19, γj is a sub-exponential random variable with parameter
(
2σ2/j, 4σ2/j

)
. We can then

apply Fact 20, for which we have ν∗ =
√∑k

j=1 4σ4/j2 ≤ 2πσ2/
√

6 and α∗ = 4σ2. For any failure
probability β ∈ (0, 1/2), setting t = 8 log(1/β)σ2, we conclude that:

P
[
E − E[E] ≥ 8 log (1/β) σ2

]
≤ β .

Recalling from Equation (11) that E[E] ≤ (1 + log k)σ2, we conclude that E ≤ 8 log (1/β) σ2 + (1 +
log k)σ2 with probability at least 1 − β.

The rest of the details follow as before. In particular, as in Equation (12), we can bound:

W1(p, q) ≤
√

2Γ + 36
k

+ 1
2⌈ϵn⌉

,

where Γ ≤
√

2E. Plugging in k = ⌈2ϵn⌉ (as chosen in Algorithm 2) and recalling that σ2 =
16
π (1 + log k) ln(1.25/δ)/(ϵ2n2), we conclude that with probability ≥ 1 − β, for a fixed constant c,

W1(p, q) ≤ c

(√
log(ϵn) + log(1/β)

√
log(ϵn) log(1/δ)

ϵn

)
.
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C Spectral Density Estimation Lower Bound
In this section, we provide a lower bound on the number of matrix-vector multiplications required
for spectral density estimation. We first need the following theorem from Woodruff et al. [WZZ22],
which shows that estimating the trace of a positive semi-definite matrix A to within a multiplicative
error of (1 ± ϵ) requires Ω(1/ϵ) number of matrix-vector multiplications with A.

Theorem 21 (Restated [WZZ22, Theorem 4.2]). For all δ > 0 and ϵ = O
(
1/
√

log(1/δ)
)
, any

algorithm that is given matrix-vector multiplication access to a positive semi-definite (PSD) input
matrix A ∈ Rn×n with ∥A∥2 ≤ 1, n/4 ≤ tr(A) ≤ n and succeeds with probability at least 1 − δ

in outputting an estimate t̃ such that
∣∣t̃ − tr(A)

∣∣ ≤ ϵ · tr(A) requires Ω
(

log(1/δ)
ϵ

)
matrix-vector

multiplications with A.

As a corollary of this result, we obtain the following lower bound, which shows that Theorem 5 is
tight up to log(1/ϵ) factors:

Corollary 22. Any algorithm that is given matrix-vector multiplication access to a symmetric
matrix A with spectral density p and ∥A∥2 ≤ 1 requires Ω

(
log(1/δ)

ϵ

)
matrix-vector multiplications

with A to output a distribution q such that W1(p, q) ≤ ϵ.

Proof. The proof is via a direct reduction. Consider a PSD matrix A with ∥A∥2 ≤ 1, n/4 ≤ tr(A) ≤ n,
and spectral density p. Suppose we have a spectral density estimate q of p such that W1(p, q) ≤ ϵ/4.
We claim that t̃ = n ·

∫ 1
−1 xq(x) dx yields a relative error approximate to A’s trace, implying that

computing such a q requires Ω(log(1/δ)/ϵ) by Theorem 21.

In particular, applying Kantorovich-Rubinstein duality (Fact 7) with the 1-Lipschitz functions
f(x) = x and f(x) = −x, we have that:∫ 1

−1
xp(x) dx −

∫ 1

−1
xq(x) dx ≤ ϵ/4 and

∫ 1

−1
xq(x) dx −

∫ 1

−1
xp(x) dx ≤ ϵ/4. (19)

We have that
∫ 1

−1 xp(x) dx = 1
ntr(A). So (19) implies that t̃ = n ·

∫ 1
−1 xq(x) dx satisfies:

|t̃ − tr(A)| ≤ n · ϵ/4 ≤ ϵ · tr(A).
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