# Sitemap

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

## Markdown

This is a page not in th emain menu

## A Note About Sparse Optimization

Published:

For an under-determined system of linear equations, there exists infinitely many solutions. However, with more information, for example, if we know the the optimal solution is sparse, we can recover the desired solution.

## ICTS Summer School on Advanced in Applied Probability

Published:

I have been attending an awesome summer school at ICTS on Advances in Applied Probability at ICTS. Find the link here! There are many interesting things I have learnt here. Things that were related to my interests were the: optimal transport course by Dr Jose Blanchet, non-parametric matrix estimation by Dr Devarat Shah, and a talk on Gaussian mean estimation by Dr Praneeth Netrapalli. Find the videos for these talks on YouTube.

## On Euclidean k-means with α-Center Proximity

Published in AISTATS, 2019

$k$-means clustering is NP-hard in the worst case but previous work has shown efficient algorithms assuming the optimal $k$-means clusters are stable under additive or multiplicative perturbation of data. This has two caveats. First, we do not know how to efficiently verify this property of optimal solutions that are NP-hard to compute in the first place. Second, the stability assumptions required for polynomial time $k$-means algorithms are often unreasonable when compared to the ground-truth clusters in real-world data. A consequence of multiplicative perturbation resilience is center proximity, that is, every point is closer to the center of its own cluster than the center of any other cluster, by some multiplicative factor $\alpha > 1$.
We study the problem of minimizing the Euclidean $k$-means objective only over clusterings that satisfy $\alpha$-center proximity. We give a simple algorithm to find the optimal $\alpha$-center-proximal $k$-means clustering in running time exponential in k and $1/(\alpha−1)$ but linear in the number of points and the dimension. We define an analogous $\alpha$-center proximity condition for outliers, and give similar algorithmic guarantees for $k$-means with outliers and $\alpha$-center proximity. On the hardness side we show that for any $\alpha’ > 1$, there exists an $\alpha \leq \alpha’$, $(\alpha > 1)$, and an $\varepsilon_0>0$ such that minimizing the $k$-means objective over clusterings that satisfy $\alpha$-center proximity is NP-hard to approximate within a multiplicative $(1+\varepsilon_0)$ factor. Find the full paper here.

Recommended citation: Amit Deshpande, Anand Louis, Apoorv Singh ; Proceedings of Machine Learning Research, PMLR 89:2087-2095, 2019 http://proceedings.mlr.press/v89/deshpande19a.html

## Approximation Algorithms for Cost-Balanced Clustering

Published in Preprint, 2019

Clustering points in the Euclidean space is a fundamental problem in the theory of algorithms and in unsupervised learning. Various clustering objectives to quantify the quality of clustering have been proposed and studied; the $k$-means and $k$-median clustering objective are the most popular ones. In some cases, the $k$-means or the $k$-median objective may result in a few clusters of very large cost and many clusters of extremely small cost. Even when the optimal clusters are balanced in size, some of them may have a huge variance. This is undesirable for quantization or when we have a budget constraint on the cost of each cluster. Motivated by this, we study the cost-balanced $k$-means and the cost-balanced $k$-median problem. For a $k$-clustering $O_1, \ldots, O_k$ of a given set of $n$ points $X \subset \mathbb R^d$, we define its cost-balanced $k$-means cost as:

$\boxed{\mathcal K ({O_1, \ldots, O_k}) \stackrel{def}{=} \max_{l \in [k]} \sum_{x \in O_l} \left\lVert{x - \mu_l}\right\rVert^2, \qquad \textrm{where } \mu_l = \frac{1}{\left\lvert{O_l}\right\rvert} \sum_{x \in O_l} x ~}$

In other words, we want to minimize the cost of the heaviest cluster or balance the cost of each cluster. For any $\varepsilon > 0$, we give a randomized algorithm with running time $\mathcal O\big({2^{poly \big({k/\varepsilon}\big)} n d }\big)$ that gives a $(1+\varepsilon)$-approximation to the optimal cost-balanced $k$-means and the similarly defined optimal cost-balanced $k$-median clustering, using $k$ clusters, with a constant probability. We define a more general version of the $k$-median clustering and the cost-balanced $k$-median clustering, and we name them $\ell_p$ cost $k$-clustering and $\ell_p$ cost-balanced $k$-clustering, respectively. Given a black-box algorithm which gives a constant factor approximation to the $\ell_p$ cost $k$-clustering, we show a procedure that runs in time $poly(n,k,p)$ which gives a bi-criteria $\mathcal O\big({1/\varepsilon^{1/p}}\big)$-approximation to the optimal $\ell_p$ cost-balanced $k$-clustering, using $(1+\varepsilon)k$ clusters.

Recommended citation: Amit Deshpande, Anand Louis, Deval Patel, Apoorv Singh. Approximation Algorithm for Cost-Balanced Clustering. In Submission. https://www.dropbox.com/s/r5uwemki3zfvvyb/min_max_km.pdf?dl=0

## Clustering Perturbation Resilient Instances

Published:

Gave a talk at the IIIT Bangalore Theory Club on our work on clustering with center proximity and min-max k-means problem. Link to the slides.

## On Euclidean k-means with α-Center Proximity

Published:

Presented our poster on our work (joint work with Dr Amit Deshpande and Dr Anand Louis) on Euclidean $k$-Means Clustering with $\alpha$-Center Proximity. Click here for the poster.

## Euclidean k-Means with Center Proximity

Published:

Gave a talk at the INRIA Lille on our work on clustering Euclidean $k$-Means with Center Proximity Link to the announcement.

## Teaching experience 1

Undergraduate course, University 1, Department, 2014

This is a description of a teaching experience. You can use markdown like any other post.

## Teaching experience 2

Workshop, University 1, Department, 2015

This is a description of a teaching experience. You can use markdown like any other post.